Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Free Multibody Cosimulation Based Prototyping of Motorcycle Rider Assistance Systems

2020-10-30
2020-32-2306
Due to the increasing computational power, significant progress has been made over the past decades when it comes to CAD, multibody and simulation software. The application of this software allows to develop products from scratch, or to investigate the static and dynamic behavior of multibody models with remarkable precision. In order to keep the development costs low for highly sophisticated products, more precisely motorcycle rider assistance systems, it is necessary to focus extensively on the virtual prototyping using different software tools. In general, the interconnection of different tools is rather difficult, especially when considering the coupling of a detailed multibody model with a simulation software like MATLAB Simulink. The aim of this paper is to demonstrate the performance of a motorcycle rider assistance algorithm using a cosimulation approach between the free multibody software called FreeDyn and Simulink based on a sophisticated multibody motorcycle model.
Technical Paper

Experimental Investigations on Evaporation Characteristics of Fuels for Low Temperature Combustion Engine Application

2020-10-30
2020-32-2317
The combustion and emission formation in the advanced low temperature combustion (LTC) engine strategies are highly sensitive to fuel molecular composition and properties. Ignition timing in LTC is primarily controlled by fuel chemical kinetics and thus, tailoring of fuel properties is required to address its limitations in-terms of lack of control on ignition timing and narrow operating load range. Utilizing fuel blends and additives such as nanoparticles are one of the promising approaches to achieve targeted fuel property. An improved understanding of fundamental processes including fuel evaporation is required owing to its role in fuel-air mixing and thereby emission formation in LTC. In the present work, evaporation characteristics of blends of commercial fuels, viz. gasoline, diesel and alternative fuels, viz. ethanol and butanol are investigated. Further, graphene based nanoadditives at 0.05 wt % in gasoline, diesel and butanol are also investigated.
Technical Paper

Novel Modelling Techniques of the Evolution of the Brake Friction in Disc Brakes for Automotive Applications

2020-10-05
2020-01-1621
The aim of the presented research is to propose and benchmark two brake models, namely the novel dynamic ILVO model and a neural network based regression. These can estimate the evolution of the brake friction between pad and disc under different load conditions, which are typically experienced in vehicle applications. The research also aims improving the knowledge of the underlying mechanism related to the evolution of the BLFC (boundary layer friction coefficient), the reliability of virtual environment simulations to speed up the product development time and reducing the amount of vehicle test in later phases and finally improving brake control functions. With the support of extensive brake dynamometer testing, the proposed models are benchmarked against State-of-the-Art. Both approaches are parametrised to render the friction coefficient dynamics with respect to the same input parameters.
Technical Paper

Development of Friction Materials Regulations for Four Latin American Countries

2020-10-05
2020-01-1615
Brakes are the most important safety device in a vehicle, however there are few barriers to manufacture, import, or sell friction materials in most of the countries, including USA. European countries, with the ECE R90 program, are a big exception. International Transport Forum published in 2016 the “Benchmarking of road safety in Latin America” report, it mentions that worldwide 17.5 people in every 100,000 die in road accidents, however Andean countries mortality rate is 23.4 and South American 21.0, considerably higher than the worldwide average.
Technical Paper

Comparison of Particulate Matter and Number Emissions from a Floating and a Fixed Caliper Brake System of the Same Lining Formulation

2020-10-05
2020-01-1633
The particulate emissions of two brake systems where characterized in a dilution tunnel optimized for PM10 measurements. The larger of them employed a fixed caliper (FXC) and the smaller one a floating caliper (FLC). Both used ECE brake pads of the same lining formulation. Measured properties included gravimetric PM2.5 and PM10, Particle Number (PN) concentrations of both untreated and thermally treated (according to exhaust number regulation) particles using Condensation Particle Counters (CPCs) having 23 and 10 nm cut-off sizes, and an Optical Particle Sizer (OPS). The brakes were tested over a novel test cycle developed from the database of the Worldwide harmonized Light-Duty vehicles Test Procedure (WLTP). A series of WLTP tests were performed starting from unconditioned pads, to characterize the evolution of emissions until their stabilization. Selected tests were also performed over a short version of the Los Angeles City Cycle.
Technical Paper

A Priori Analysis of Acoustic Source Terms from Large-Eddy Simulation in Turbulent Pipe Flow

2020-09-30
2020-01-1518
The absence of combustion engine noise pushes increasingly attention to the sound generation from other, even much weaker, sources in the acoustic design of electric vehicles. The present work focusses on the numerical computation of flow induced noise, typically emerging in components of flow guiding devices in electro-mobile applications. The method of Large-Eddy Simulation (LES) represents a powerful technique for capturing most part of the turbulent fluctuating motion, which qualifies this approach as a highly reliable candidate for providing a sufficiently accurate level of description of the flow induced generation of sound.
Technical Paper

Fault Diagnosis of an Engine through Analyzing Vibration Signals on the Block

2020-09-30
2020-01-1568
Unpredictable faults oriented from ambiguous reasons could occur in an engine of a vehicle. However, there are some symptoms from which an engine is working abnormally before the engine is stalled by faults. In this paper, methods for diagnosis of engine faults by using vibrations are proposed. Through bench tests, to extract features for fault diagnosis, various samples with normal and abnormal conditions are prepared and vibration signals from the block of an engine are measured and analyzed. To consider cost and performance of a sensor, vibrations from a knock sensor signal as well as accelerometers are analyzed. Measured vibration signals are synchronized with signal of the crank position sensor and analyzed to detect which event is involved. Modulation analysis and Hilbert transform are applied to extract features representing the symptoms of engine faults and to indicate when the abnormal event happens, respectively.
Technical Paper

Engine Sound Reduction and Enhancement using Engine Vibration

2020-09-30
2020-01-1537
Over the past decade, there have been many efforts to generate engine sound inside the cabin either in reducing way or in enhancing way. To reduce the engine noise, the passive way, such as sound absorption or sound insulation, was widely used but it has a limitation on its reduction performance. In recent days, with the development of signal processing technology, ANC (Active Noise Control) is been used to reduce the engine noise inside the cabin. On the other hand, technologies such as ASD (Active Sound Design) and ESG (Engine Sound Generator) have been used to generate the engine sound inside the vehicle. In the last ISNVH, Hyundai Motor Company newly introduced ESEV (Engine Sound by Engine Vibration) technology. This paper describes the ESEV Plus Minus that uses engine vibration to not only enhance the certain engine order components but reduce the other components at the same time. Consequently, this technology would produce a much more diverse engine sound.
Technical Paper

How Can Active Exhaust Systems Contribute to the Reduction of CO2 Emission and Comply with Future Pass-by Noise Limits?

2020-09-30
2020-01-1534
The pass-by noise limits of passenger vehicles according to ISO 362 / R51.3 will be further reduced by 2 dB in 2024 in Europe. Since the pass-by noise is substantially influenced by exhaust noise, the effort for the exhaust system needs to be increased. This results in systems with larger mufflers or higher backpressure. However, the more stringent CO2-emission targets require ever more efficient powertrains, which calls for rather lower backpressure to optimize the engine design. This paper describes, how compact active exhaust lines can support a design for low backpressure and high acoustic attenuation at the same time. For two passenger vehicle with gasoline engines, active exhaust lines are investigated in detail and the results are compared to the series production exhaust lines. Thus, in one exemplary case, the pass-by noise of a limousine could be reduced from 70 dB(A) to 68 dB(A) without any change in the vehicle design except the improved exhaust system.
Technical Paper

Extended Solution of a Trimmed Vehicle Finite Element Model in the Mid-Frequency Range

2020-09-30
2020-01-1549
The acoustic trim components play an essential role in Noise, Vibration and Harshness (NVH) behavior by reducing both the structure borne and airborne noise transmission while participating to the absorption inside the car and the damping of the structure. Over the past years, the interest for numerical solutions to predict the noise including trim effects in mid frequency range has grown, leading to the development of dedicated CAE tools. Finite Element (FE) models are an established method to analyze NVH problems. FE analysis is a robust and versatile approach that can be used for a large number of applications, like noise prediction inside and outside the vehicle due to different sources or pass-by noise simulation. Typically, results feature high quality correlations. However, future challenges, such as electric motorized vehicles, with changes of the motor noise spectrum, will require an extension of the existing approaches.
Technical Paper

Engine knock evaluation using a machine learning approach

2020-09-27
2020-24-0005
Artificial Intelligence is becoming very important and useful in several scientific fields. Machine learning methods, such as neural networks and decision trees, are often proposed in applications for internal combustion engines as virtual sensors, faults diagnosis systems and engine performance optimization. The high pressure of the intake air coupled with the demand of lean conditions, in order to reduce emissions, have often close relationship with the knock events. Fuels autoignition characteristics and flame front speed have a significant impact on knock phenomenon and producing high internal cylinder pressures and engine faults. The limitations in using pressure sensors in the racing field and the challenge to reduce the costs of commercial cars, push the replacement of a sensor redundancy with a software redundancy.
Technical Paper

An Active Safety System Able to Counter Aquaplaning, Integrated With Sensorized Tires, ADAS and 5G Technology for Both Human-Driven and Autonomous Vehicles

2020-09-27
2020-24-0019
Autonomous vehicles must guarantee safety in all road conditions, including driving on wet roads. Aquaplaning (or hydroplaning) is a phenomenon known since the beginning of automotive history, never solved by an active safety system. Currently, no countermeasure system on the market is able to effectively counteract aquaplaning: ABS, ESP or TCS are still inefficient in overcoming this situation. Latest statistical data confirm that the higher percentage of accidents, injuries and deaths are caused by wet road conditions. The aquaplaning happens when the water on the road is too much and the tires start to float causing the instantaneous loss of control. Such phenomenon occurs in human-driven vehicles, with the responsibility of the driver, but in autonomous vehicles (e.g. Level 5), the responsibility for the safety depends on the car and the reduction of the speed is not a solution.
Technical Paper

CFD Numerical Reconstruction of the Flash Boiling Gasoline Spray Morphology

2020-09-27
2020-24-0010
The numerical reconstruction of the liquid jet generated by a multi-hole injector, operating in flash-boiling conditions, has been developed by means of an Eulerian- Lagrangian CFD code and validated thanks to experimental data collected with schlieren and Mie scattering imaging techniques. The model has been tested with different injection parameters in order to recreate various possible engine thermodynamic conditions. The work carried out is framed in the growing interest present around the gasoline direct-injection systems (GDI). Such technology has been recognized as an effective way to achieve better engine performance and reduced pollutant emissions. High-pressure injectors operating in flashing conditions are demonstrating many advantages in the applications for GDI engines providing a better fuel atomization, a better mixing with the air, a consequent more efficient combustion and, finally, reduced tailpipe emissions.
Technical Paper

Investigation of Hybrid Polyamide Composites for Replacement of Metallic Parts

2020-09-25
2020-28-0423
Over the past few decades, the world is looking for a better replacement option for metals. Polymers with reinforcements are finding their way deep inside in most of the engineering application because of its lightweight and superior properties. The aim of this study is to investigate hybrid polymer composite polyphthalamide (PPA) reinforced with glass fibre and Poly tetra fluro ethylene. The reinforcement was varied as 10, 20, 30wt% of Glass Fibre, while fixed quantity of Poly tetra fluro ethylene (PTFE) as 5wt % was taken for hybrid composites preparation. The virgin and hybrid composite specimen were prepared under optimal process parametric conditions through the use of injection moulding techniques and test samples were produced as per ASTM standards. The response of physical properties such as density and various Mechanical testing like Hardness, Tensile Strength, impact and flexural test were carried out and noted.
Technical Paper

Experimental investigation on Biogas Production from Waste Press Mud and Cow Dung under Anaerobic Condition

2020-09-25
2020-28-0467
Anaerobic digestion of textile wastes under mesophilic conditions were conducted in batch mode with aim of investigating the bio-methane evolution with an initial solid mass of cow dung – 2 kg, cotton and water in 3:1 ratio and press mud is use in the ratio 3:1 with water were evaluated subsequently for 7 weeks (42 days).The highest production of biogas is noted as 3 m3 in fourth week and the higher production of biogas due to press mud is noted as 0.49 in the fifth week.Carbon dioxide is produced as bi product in this bio digestion process. Highest production rate of methane,biogas and carbon dioxide are in their fourth week. Through this experiment 65%-75% of bio gas is collected by the fourth week.
Technical Paper

A Unique Methodology to Evaluate the Structural Robustness of a Dual-Mass Flywheel Under Real-World Usage Conditions

2020-09-25
2020-28-0475
Dual mass flywheel (DMF) is an excellent solution to improve the noise, vibration and harshness (NVH) characteristic of any vehicle by isolating the driveline from the engine torsional vibrations. For the same reason, DMFs are widely used in high power-density diesel and gasoline engines. However, the real-world usage conditions pose a lot of challenges to the structural robustness of the DMF. In the present work, a new methodology is developed to evaluate the robustness of a DMF fitted in a compact sports utility vehicle (SUV) with real-wheel drive architecture. The abuse conditions (mis-gear, sudden braking, etc) in the real-world usage could lead to a sudden engine stall leading to an abnormally high angular deceleration of the driveline components. The higher rate of deceleration coupled with the higher rotational moment of inertia of the real-wheel drive architecture end up in introducing a significantly high impact torque on the DMF.
X