Refine Your Search

Topic

Author

Affiliation

Search Results

Training / Education

Fuel Cells for Transportation

2022-09-01
This is a three-day course which provides a comprehensive and up to date introduction to fuel cells for use in automotive engineering applications. It is intended for engineers and particularly engineering managers who want to jump‐start their understanding of this emerging technology and to enable them to engage in its development. Following a brief description of fuel cells and how they work, how they integrate and add value, and how hydrogen is produced, stored and distributed, the course will provide the status of the technology from fundamentals through to practical implementation.
Training / Education

Big Data Analytics for Connected, Autonomous Vehicles and Smart Cities

2022-05-17
There is growing interest in the concept of a smart city and how these advanced technologies will improve the quality of living and make a city more attractive to visitors, commerce and industry. This course fills an unmet need for defining and explaining the relationship between connected and autonomous vehicles (CAVs) and smart city transportation. It is apparent that CAVs will achieve the best results when integrated with current and emerging urban infrastructure for transportation. This course addresses such integration from technology, organizational, policy and business model perspectives.
Training / Education

Electrochemical Energy Systems for Electrified Aircraft Propulsion Batteries and Fuel Cell Systems

2022-05-04
In this joint AIAA / SAE course, participants will learn about Electro-chemical Energy Systems (EES), with an emphasis on electrified aircraft propulsion and power applications. The course will present the fundamentals in chemistry, materials science, electrical, and mechanical engineering for various EESs including high voltage battery systems (Li-ion and beyond) and fuel cells (PEM, solid oxide fuel cells, and others).
Training / Education

Infrared Camera for ADAS and Autonomous Sensing

2022-04-06
Advanced Driver Assist System (ADAS) and autonomous vehicle technologies have disrupted the traditional automotive industry with potential to increase safety and optimize the cost of car ownership. Among the challenges are those of sensing the environment in and around the vehicle. Infrared camera sensing is seeing a rapid growth and adoption in the industry. The applications and illumination architecture options continue to evolve. This course will provide the foundation on which to build near infrared camera technologies for automotive applications.
Technical Paper

Design of a Human-centric Auto-Climate Control System for Electric Vehicles

2022-03-29
2022-01-0194
As the global automotive industry makes a critical transition from the traditional ICEVs (Internal Combustion Engine Vehicles) to EVs (Electric Vehicles), it faces two conflicting technological challenges: 1) range degradation in cold weather conditions and 2) reducing time to thermal comfort in winter driving in absence of waste heat from the IC engine. Next to the EV drivetrain, the HVAC system is the highest consumer of electric power in the vehicle. A recent study conducted by AAA showed that interior heating can reduce the EV range by up to 41% at 20 deg. F (https://apnews.com/article/04029bd1e0a94cd59ff9540a398c12d1). Also, in 2018, the average urban commute in the United States was roughly 27 minutes (https://www.washingtonpost.com/business/2019/10/07/nine-days-road-average-commute-time-reached-new-record-last-year/). So, it is necessary to get the driver to a thermally comfortable state as quickly as possible to make EVs attractive to consumers.
Technical Paper

Demonstrating UVC LED Inside Automobile HVAC Chambers for Clean Cabin Air and Airborne Transmission Risk Reduction

2022-03-29
2022-01-0197
The COVID-19 pandemic affected mobility in many ways- from changing business models of moving passenger to delivering packages and food, developing cleaning protocols for interiors and increasing the awareness of consumers to the hidden dangers of pathogens and viruses in an enclosed space. A trend towards healthy cars is believed to remain after the current pandemic and has led to the emergence of new safety features, from CO2 gas sensors, to antimicrobial fabrics, and enhanced air purifiers. While air purifiers trap contaminants using cartridge filters, they are not particularly efficient at removing viral particles and create large pressure drops, which must be compensated with larger fans, increasing noise and power consumption, both of which are not optimal for vehicle HVAC systems. However, air purifiers act as a pressure head, which limits their utility. UVC was not previously an option because mercury lamps pose their own electrical and chemical hazards.
Technical Paper

Development of Vehicle Thermal Management Model for Improving the Energy Efficiency of Electric Vehicle

2022-03-29
2022-01-0201
Recently, automobile manufacturers are interested in the development of battery electric vehicle (BEV) having a longer mileage to satisfy customer needs. The BEV with high efficiency depends on the temperature of the electric components. Hence it is important to study the effect of the cooling system in electric vehicle in order to optimize efficiency and performance. In this study, we present a 1-D vehicle thermal management (VTM) simulation model. The individual vehicle subsystems were modeled including cooling, power electric (PE), mechanical, and control components. Each component was integrated into a single VTM model and it would be used to calculate energy transfer among electrical, thermal, and mechanical energy. As a result, this simulation model predicts a plenty of information including the state of each component such as temperature, energy consumption, and operating point about electric vehicle depending on driving cycles and environmental conditions.
Technical Paper

A Perspective on Materials Selection for Body Structure Lightweighting in Battery Electric Vehicles

2022-03-29
2022-01-0233
The secular trend of automotive body structure light-weighting for internal combustion engine (ICE) vehicles is constrained by simultaneous and increasingly challenging vehicle cost, fuel economy and passenger safety standards. Mass optimization via materials selection in ICE vehicles, therefore, is ultimately dependent on the normalized cost of mass reduction solutions and the associated implications on passenger safety and vehicle performance metrics. These constraints have resulted in development and implementation of increasingly high specific-strength solutions for metallic components in the body structure and chassis. In contrast, mass optimization in battery electric vehicles is subject to alternative performance metrics to fuel efficiency, although considerations for vehicle safety and cost naturally remain directionally similar.
Technical Paper

Non-destructive Evaluation of the Magnetic Quality of Electrical Steel Sheets by Magnetic Barkhausen Noise (MBN) Analysis

2022-03-29
2022-01-0235
Soft magnetic lamination core is a major component of all electric motors, and the magnetic quality of the lamination has a significant effect on the energy efficiency of the motor. The magnetic properties of electrical steel sheets, which are important design parameters for the manufacturing of electric motors, are normally measured on cut steel strips by standard Epstein frame method, which is destructive and is not suitable for the evaluation of magnetic anisotropy. This paper presents a relatively new technology, i.e., magnetic Barkhausen noise (MBN) analysis, to evaluate the magnetic quality of electrical steel sheets. This method is featured by non-destructive, simple measurement, short measuring time, and online/offline measurements, etc. In addition, it can be readily used to estimate the magnetic anisotropy of electrical steel sheets.
Technical Paper

Development of FE modeling Procedures for Laser Welded Aluminum Structures in An Electric Vehicle Battery Module and Validation by Test Data

2022-03-29
2022-01-0317
High strength and thin materials are widely adopted in modern electric vehicles for lightweight design to achieve high energy efficiency. For battery modules, 5000 and 6000 aluminum are typically utilized as a structural material with a thickness range between 1 to 5 mm. Laser welding is one of the most optimum welding tools for joining such a thin material due to its unique advantages, e.g., high welding speed, high accuracy, high energy yet the smallest possible heat affect zone, etc. This paper aims to develop a simplified yet effective FE modeling procedure to simulate the laser welding effects on the aluminum structures used in electric vehicle battery modules. A sequentially-coupled thermo-mechanical analysis procedure is developed to determine the softened zone size for aluminum weldments. Then a tie-rupture weld model incorporates the softened zone to predict the weld failure strength.
X