Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Wall Heat Flux on Impinging Diesel Spray Flame: Effect of Hole Size and Rail Pressure under Similar Injection Rate Condition

2020-10-30
2020-32-2313
The fuel economy of recent small size DI diesel engines has become more and more efficient. However, heat loss is still one of the major factors contributing to a substantial amount of energy loss in engines. In order to a full understanding of the heat loss mechanism from combustion gas to cylinder wall, the effect of hole size and rail pressure under similar injection rate conditions on transient heat flux to the wall were investigated. Using a constant volume vessel with a fixed impingement wall, the study measured the surface heat flux of the wall at the locations of spray flame impingement using three thin-film thermocouple heat-flux sensors. The results showed that the characteristic of local heat flux and soot distribution was almost similar by controlling similar injection rate except for the small nozzle hole size with increasing injection pressure.
Technical Paper

Investigations on NOx and Smoke Emissions Reduction Potential through Diesel-Water Emulsion and Water Fumigation in a Small Bore Diesel Engine

2020-10-30
2020-32-2312
In the present work, a relative comparison of addition of water to diesel through emulsion and fumigation methods is explored for reducing oxides of nitrogen (NOx) and smoke emissions in a production small bore diesel engine. The water to diesel ratio was kept the same in both the methods at a lower concentration of 3% by mass to avoid any adverse effects on the engine system components. The experiments were conducted at a rated engine speed of 1500 rpm under varying load conditions. A stable water-diesel emulsion was prepared using a combination of equal proportions (1:1 by volume) of Span 80 and Tween 80. The mixture of Span 80 in diesel and Tween 80 in water was homogenized using an IKA Ultra Turrax homogenizer with tip stator diameter 18mm at 5000 rpm for 2 minutes. The water-in-diesel emulsions thus formulated were kinetically stable and appeared translucent. No phase separation was observed on storage for approximately 105 days.
Technical Paper

Experimental Investigations on Evaporation Characteristics of Fuels for Low Temperature Combustion Engine Application

2020-10-30
2020-32-2317
The combustion and emission formation in the advanced low temperature combustion (LTC) engine strategies are highly sensitive to fuel molecular composition and properties. Ignition timing in LTC is primarily controlled by fuel chemical kinetics and thus, tailoring of fuel properties is required to address its limitations in-terms of lack of control on ignition timing and narrow operating load range. Utilizing fuel blends and additives such as nanoparticles are one of the promising approaches to achieve targeted fuel property. An improved understanding of fundamental processes including fuel evaporation is required owing to its role in fuel-air mixing and thereby emission formation in LTC. In the present work, evaporation characteristics of blends of commercial fuels, viz. gasoline, diesel and alternative fuels, viz. ethanol and butanol are investigated. Further, graphene based nanoadditives at 0.05 wt % in gasoline, diesel and butanol are also investigated.
Technical Paper

Enclosure-In-Chamber Setup to Achieve Near-Zero Background Concentrations for Brake Emissions Testing

2020-10-05
2020-01-1634
Measuring brake emission is still a challenging non-standardized task. Extensive research is ongoing. Updates of work in progress are presented at SAE Brake Colloquium and PMP meetings. However, open items include how to achieve lower background concentration and how to design the brake enclosure. A low background concentration is essential as brake events are short and some emit in the range of reported background levels. Hence these emissions are difficult to distinguished from the background level. Even more critical, a high background concentration can result in a wrong particle number emissions value, either overestimated, background counted as emissions, or underestimated, background level subtracted, and low emission events no longer detected and counted. However, reducing the background level to less than 100 #/cm³ appeared to be quite challenging.
Technical Paper

A Generic Testbody for Low-Frequency Aeroacoustic Buffeting

2020-09-30
2020-01-1515
Raising demands towards lightweight design paired with a loss of originally predominant engine noise pose significant challenges for NVH engineers in the automotive industry. From an aeroacoustic point of view, low frequency buffeting ranks among the most frequently encountered issues. The phenomenon typically arises due to structural transmission of aerodynamic wall pressure fluctuations and/or, as indicated in this work, through rear vent excitation. A possible workflow to simulate structure-excited buffeting contains a strongly coupled vibro-acoustic model for structure and interior cavity excited by a spatial pressure distribution obtained from a CFD simulation. In the case of rear vent buffeting no validated workflow has been published yet. While approaches have been made to simulate the problem for a real-car geometry such attempts suffer from tremendous computation costs, meshing effort and lack of flexibility.
Technical Paper

Experimental Investigation on the Effects of Cooled Low Pressure EGR and Water Injection on Combustion of a Turbocharged GDI Engine

2020-09-27
2020-24-0003
This work focuses on the effects of cooled Low Pressure EGR and Water Injection observed by conducting experimental tests consisting mainly of Spark Advance sweeps at different cooled LP-EGR and WI rates. The implications on combustion and main engine performance indexes are then analysed and modelled with a control-oriented approach, showing that combustion duration and phase and exhaust gas temperature are the main affected parameters. Results show that cooled LP-EGR and WI have similar effects, being the associated combustion speed decrease the main cause of exhaust gas temperature reduction. Experimental data is used to identify control-oriented polynomial models able to capture the effects of LP-EGR and WI on both these aspects. The limitations of LP-EGR are also explored, identifying maximum compressor volumetric flow and combustion stability as the main ones.
Technical Paper

Factors influencing the formation of soft particles in biodiesel

2020-09-27
2020-24-0006
In order to mitigate the effect of fossil fuels on global warming, biodiesel is used as drop in fuel. However, in the mixture of biodiesel and diesel, soft particles may form. These soft particles are organic compounds, which can originate from the production and degradation of biodiesel. Further when fuel is mixed with unwanted contaminants such as engine oil the amount soft particles can increases. The presence of these particles can cause malfunction in the fuel system of the engine, such as nozzle fouling, internal diesel injector deposits (IDID) or fuel filter plugging. Soft particles and the mechanism of their formation is curtail to understand in order to study and prevent their effects on the fuel system. This paper focuses on one type of soft particles, which are metal soaps. More precisely on the role of the short chain fatty acids (SCFA) during their formation. In order to do so, aged and unaged B10 and B100 were studied.
Technical Paper

Experimental Investigations of Noise, Vibration and Combustion Characteristics of Diesel and Pongamia Biodiesel Blends on a CI Genset Engine

2020-09-25
2020-28-0471
Compression-Ignition engines are widely used for irrigation purposes in rural areas, which produce more noise and vibrations. In this research, neat diesel and Pongamia biodiesel blend (B20) was used to study combustion, noise, and vibration characteristics of an unmodified Genset compression ignition engine. Investigations were carried out in various load conditions from no load to full load. From the experimental results, it has been found that a strong correlation exists between the heat release rate and engine noise. The heat release rate is directly proportional to the magnitude of the engine noise. The noise level has an increasing trend for diesel and a decreasing trend for biodiesel with an increase in load conditions. A maximum of 80.3dB and 78.3dB was observed at 60% loading conditions for diesel and biodiesel, respectively.
Technical Paper

Experimental investigation on Biogas Production from Waste Press Mud and Cow Dung under Anaerobic Condition

2020-09-25
2020-28-0467
Anaerobic digestion of textile wastes under mesophilic conditions were conducted in batch mode with aim of investigating the bio-methane evolution with an initial solid mass of cow dung – 2 kg, cotton and water in 3:1 ratio and press mud is use in the ratio 3:1 with water were evaluated subsequently for 7 weeks (42 days).The highest production of biogas is noted as 3 m3 in fourth week and the higher production of biogas due to press mud is noted as 0.49 in the fifth week.Carbon dioxide is produced as bi product in this bio digestion process. Highest production rate of methane,biogas and carbon dioxide are in their fourth week. Through this experiment 65%-75% of bio gas is collected by the fourth week.
Technical Paper

Experimental and Numerical Investigation of Contact Pressure Existence in Sealing Structure

2020-09-25
2020-28-0343
Sealing is one of the important components in the automotive and aerospace industry. The primary function of the lip seal is to protect contamination and retaining the lubricant. This investigation relates to a study of contact pressure existence on sealing structure between there mating region. Sealing for steering intermediate shaft should sustain sliding motion between shaft and seal as well as protection of lubricant from contamination and retention. Contact pressure analysis of Steering intermediate shaft with hyper elastic rubber seal is done at static condition using ABAQUS. Experiments were also conducted to check contact pressure between seal and shaft by using Fuji-pressure film sensor. The result from CAE analysis was compared with experimental data with 75% of the correlation with respect to CAE. This analysis of contact pressure helps to support on giving enough interference between seal and shaft which satisfies the need of sealing for an intermediate shaft.
Technical Paper

Effect of Cobalt Chromite on the Investigation of Traditional CI Engine Powered with Raw Citronella Fuel for the Future Sustainable Renewable Source

2020-09-25
2020-28-0445
The rapid deficiency of fossil fuel resources encourages the research community to discover the sustainable alternate fuel, in order to overcome the fuel cost and also meet the stringent emission norms. In this connection, the current investigation explores the influence of cobalt chromate with significant potential of citronella biofuel for CI engine applications. In present investigation, the synthesized cobalt chromate nano additive blended with citronella biofuel with the help of magnetic stirrer for a period of 15 to 20 minutes on a volume basis. In this experimentation, various blend contractions are prepared as follows as 50ppm, 100ppm, and 150ppm to run the engine. The outcome results explore that the 100ppm cobalt chromate dispersion in biofuel has a significant increase in brake thermal efficiency as 2.9% than raw citronella biofuel.
Technical Paper

Modular Design and Analyze of Air Intake Manifold for Formula Vehicle

2020-09-25
2020-28-0485
The SAE formula student car organization constrained a rule to place a restrictor of diameter 20mm in between the throttle body and the engine inlet. The restrictor is a component that reduces and regulates the mass flow of air into the engine inlet. For this, a venture nozzle will be used as a restrictor in a vehicle to decrease the air pressure and increase the velocity in the intake manifold. Our proposed work aims to minimize the pressure drop by changing the convergent and divergent angles in the restrictor. For this by using solidworks eight various combinations of models with convergent angle as 13, 15 degrees, and divergent angle as 5,7 degrees was designed and analyzed using CFD fluent in ansys work bench. In this, 13 degree as convergent and 5 degree as a divergent model was found to have laminar airflow throughout with optimum pressure drop. The plenum is a large duct that equalizes the pressure drop caused by the restrictor in order to improve the efficiency of the engine.
Technical Paper

Investigations on the Effect of Synchronizer Strut Detent Groove Profile on Static and Dynamic Gear Shift Quality of a Manual Transmission

2020-09-25
2020-28-0319
Automotive manufacturers are constantly working towards enhancing the driving experience of the customers. In this context, improving the static and dynamic gear shift quality plays a major role in ensuring a pleasant and comfortable driving experience. Moreover, the gear shift quality of any manual transmission is mainly defined by the design of the synchronizer system. The synchronizer sleeve strut detent groove profile plays a vital role in defining the performance of the synchronizer system by generating the minimum required pre-synchronization force. This force is important to move the outer synchronizer ring (blocker ring) to the required index position and to wipe-out the oil from the conical friction surfaces to build rapid high cone torque. Both these functional requirements are extremely critical to have a smooth and quick synchronization of the rotating parts under dynamic shift conditions.
Technical Paper

Modeling and Simulation of a Fighter Aircraft Cabin Temperature Control System Using AMESim

2020-09-25
2020-28-0497
Environmental Control System (ECS) of an aircraft is a complex system which operates classically in an air standard refrigeration cycle. ECS controls the temperature, pressure and flow of supply air to the cockpit, cabin or occupied compartments. The air cycle system of ECS takes engine bleed air as input. Parameters like bleed air pressure and temperature, mass flow, the external factors like ambient temperature, pressure, and aircraft attitude affect the performance of ECS to a large extent especially during transient. So, it is very important to consider the transient characteristics of these parameters in the design stage itself in order to ascertain the dynamic response of the system. This paper explains in detail the importance of transient input characteristics during the detailed design of ECS. A typical temperature control scheme for combat aircraft ECS has been studied and modeled in LMS AMESim.
Technical Paper

Ergonomic Study of Occupant Seating Using Near-Vertical Posture for Shared Mobility Applications

2020-09-25
2020-28-0519
Transportation system is at the brink of revolution and many new ways of mobility are arising in the market to ease the pressure on the established transportation infrastructure. Many companies and governments around the world are exploring innovative options in the space of shared mobility to reduce the overall carbon footprint. To expedite the adoption of shared mobility in India, it is necessary to make such options comfortable and cost-effective. One of the most effective way to make shared mobility options cost effective is to comfortably increase occupancy per vehicle footprint. This paper aims to evaluate a novel method of occupant seating to identify the maximum number of passengers a vehicle can accommodate without significant impact on occupant comfort. It is assumed that shared mobility options are used for a short duration of commute, and hence the comfort of the seat can be marginally compromised to increase the total number of occupants.
Technical Paper

A Comparative Assessment of Tailpipe Emission Characteristics on Diesel Engine Using Nanofluid with R-EGR Setup

2020-09-25
2020-28-0442
The current research over the use of nano additive as a distinguishable thing on decelerating hazardous diesel engine emissions. The experiment was conducted with biofuel, there is no significance of engine modifications for using the biofuel. The surplus amount of oxygen integrated within the biofuel can able to generate higher combustion rate relatively it produces more NOx, the NOx burden can be reduced with the help of REGR (reformed exhaust gas recirculation). The reforming of exhaust gases causes the measurable generation of smoke, CO and HC. In order to reduce the formation of above emissions, the affordable and sustainable alternate identified from the present research, by citronella biofuel with 100ppm Cobalt Chromite nano additive. The scrutinized output enumerates that the substantial reduction in HC, CO, and BSFC with elevated EGT (exhaust gas temperature) achieved by CBN-REGR than the typical usage of the traditional CB-EGR system.
Technical Paper

Effect of Hybrid Nano additives on Performance and Emission Characteristics of a Diesel Engine Fueled with Waste Cooking Oil Biodiesel

2020-09-25
2020-28-0521
The search for a new renewable biofuel and aiming to make the environment clean is always a challenge for a researcher in developing a sustainable fuel for future mobility. In this context, vegetable oils were found as good alternative biofuels for diesel engines as they are biodegradable and renewable in nature. Most of the physio-chemical properties of vegetable oils are very closer to diesel. However, pure vegetable oils are expensive and using them to operate the diesel engine may affect the food supply chain. In view of this limitation, Waste Cooking Oil Biodiesel (WCOB) derived from waste cooking oil (WCO) was found to be very attractive solution for the above said constraints as they are easily available, renewable, economically and environmentally viable. This research aims at studying the effect of hybrid nano additives (i.e. Copper Oxide with Zinc Oxide) on performance and emission characteristics of a diesel engine fueled with Waste Cooking Oil Biodiesel.
Technical Paper

Influence of Injection Parameters on Performance and Emission of DI Diesel Engine Fuelled by 1,4-Dioxane Emulsified Fuel

2020-09-25
2020-28-0518
The pattern of utilizing the water/diesel emulsion fuels in engines had been given great importance due to its ecological and exhaustion of petroleum reserves. This investigation displays the impact of 1,4-dioxane emulsified fuel on performance and emissions at various operating pressures. 1,4-dioxane emulsified fuel (DWSD10) was prepared with 10% 1,4-dioxane, 10% water, 0.2% surfactant and 79.8% diesel. To estimate the engine performance and emissions, the engine was operated with 180 bar, 200 bar and 220 bar operating pressures and the output was equated with diesel fuel operating on normal pressure of 200 bar. BTE of 1,4-dioxane emulsified fuel at 220 bar was higher when compare with diesel fuel. CO, HC and BSEC were lower at 220 bar on par with diesel fuel. However, NOx was increases for the higher operating pressure. Overall, except NOx, at higher injection pressure (@220 bar) the 1,4-dioxane emulsified fuel outperforms the diesel fuel in terms of emission and performance.
X