Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Relationship Between Substrate Mounting Materials and Diesel Substrate and Shell Surface Temperatures: On-Engine Experimental Testing and Thermal Modeling

2007-04-16
2007-01-1119
This paper summarizes the investigative work done to evaluate the effects of diesel substrate mounting materials on substrate surface temperatures and external shell surface temperatures. For the work completed, a test set-up and protocol was established, test results were obtained for different materials, a representative thermal model was developed, and the experimental test results were compared to the thermal model results. A stationary diesel engine incorporating secondary fuel injection for active regeneration was employed. The base test exhaust emission control systems consisted of a DOC + uncatalyzed DPF configuration. An appropriate data acquisition and thermocouple map was developed to monitor the exhaust system temperature conditions. The test cycle employed consisted of a soot loading segment, a standard filter regeneration segment, and a transient regeneration segment.
Technical Paper

Real World Performance of an Onboard Gasoline/Ethanol Separation System to Enable Knock Suppression Using an Octane-On-Demand Fuel System

2018-04-03
2018-01-0879
Higher compression ratio and turbocharging, with engine downsizing can enable significant gains in fuel economy but require engine operating conditions that cause engine knock under high load. Engine knock can be avoided by supplying higher-octane fuel under such high load conditions. This study builds on previous MIT papers investigating Octane-On-Demand (OOD) to enable a higher efficiency, higher-boost higher compression-ratio engine. The high-octane fuel for OOD can be obtained through On-Board-Separation (OBS) of alcohol blended gasoline. Fuel from the primary fuel tank filled with commercially available gasoline that contains 10% by volume ethanol (E10) is separated by an organic membrane pervaporation process that produces a 30 to 90% ethanol fuel blend for use when high octane is needed. In addition to previous work, this paper combines modeling of the OBS system with passenger car and medium-duty truck fuel consumption and octane requirements for various driving cycles.
X