Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Thermodynamic Benefits of Opposed-Piston Two-Stroke Engines

2011-09-13
2011-01-2216
A detailed thermodynamic analysis was performed to demonstrate the fundamental efficiency advantage of an opposed-piston two-stroke engine over a standard four-stroke engine. Three engine configurations were considered: a baseline six-cylinder four-stroke engine, a hypothetical three-cylinder opposed-piston four-stroke engine, and a three-cylinder opposed-piston two-stroke engine. The bore and stroke per piston were held constant for all engine configurations to minimize any potential differences in friction. The closed-cycle performance of the engine configurations were compared using a custom analysis tool that allowed the sources of thermal efficiency differences to be identified and quantified.
Technical Paper

Modern Diesel Particulate Matter Measurements and the Application of Lessons Learned to 2007 Levels and Beyond

2005-04-11
2005-01-0194
Experimental tests were conducted to determine the sensitivity of Diesel particulate matter (PM) at a given engine operating condition using a single cylinder research engine at the University of Wisconsin Engine Research Center. Utilizing a full dilution tunnel with a second stage partial dilution tunnel, the PM emissions were characterized. Physical properties were measured with a variety of instruments including a Scanning Mobility Particle Sizer (SMPS), Tapered Element Oscillating Microbalance (TEOM) as well as traditional filter-based gravimetric measurements. Chemical composition was determined through the use of the Thermal/Optical Transmittance (TOT) Method, Ion Chromatography (IC) and Inductively Coupled Plasma - Optical Emission Spectroscopy (ICP/OES). Particulate mass emissions were shown to be on the order of 0.05 g/bhp-hr for the light load engine operating condition selected.
X