Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

A Technique for Selecting Emerging Technologies for a Fleet of Commercial Aircraft to Maximize R&D Investment

2001-09-11
2001-01-3018
A solid business case is highly dependent upon a strategic technology research and development plan in the early phases of product design. The embodiment of a strategic technology development plan is the identification and subsequent funding of high payoff technology programs that can maximize a company’s return on investment, which entails both performance and economic objectives. This paper describes a technique whereby the high payoff technologies may be identified across multiple platforms to quantitatively justify resource allocation decisions and investment opportunities. A proof of concept investigation was performed on a fleet of subsonic, commercial aircraft.
Technical Paper

Development of a Multi-Mission Sizing Methodology Applied to the Common Support Aircraft

2001-09-11
2001-01-3014
A methodology is developed for the rapid quantification and exploration of the design space of a multi-mission vehicle. This method is applied to the Common Support Aircraft, a vehicle with four separate missions, to determine which is most critical to size the vehicle. The Airborne Early Warning mission is shown to be critical for sizing the Common Support Aircraft. Furthermore, the method developed gives a feel for the excess capability of the aircraft in its other support roles. Finally, this methodology is shown to be useful in the creation of balanced requirements for multi-mission vehicles.
Technical Paper

Variable Cycle Optimization for Supersonic Commercial Applications

2005-10-03
2005-01-3400
Variable cycle engines (VCEs) hold promise as an enabling technology for supersonic business jet (SBJ) applications. Fuel consumption can potentially be minimized by modulating the engine cycle between the subsonic and supersonic phases of flight. The additional flexibility may also contribute toward meeting takeoff and landing noise and emissions requirements. Several different concepts have been and are currently being investigated to achieve variable cycle operation. The core-driven fan stage (CDFS) variable cycle engine is perhaps the most mature concept since an engine of this type flew in the USAF Advanced Tactical Fighter prototype program in the 1990s. Therefore, this type of VCE is of particular interest for potential commercial application. To investigate the potential benefits of a CDFS variable cycle engine, a parametric model is developed using the NASA Numerical Propulsion System Simulation (NPSS).
X