Refine Your Search

Search Results

Viewing 1 to 5 of 5
Technical Paper

Software Complex for Riveting Process Simulation

The presented paper describes the software complex developed in St. Petersburg Polytechnical University for AIRBUS aimed at simulation of aircraft assembly process. Previous version of this complex was described in [1].
Technical Paper

Innovation Readiness: Past and Current Drivers in Aeronautical Engineering

This paper proposes a rearview on aeronautical innovation, addresses some 2000-2010 new products, and suggests elements of future vision, serving passengers aspirations. Over 100 years, aeronautics brilliantly domesticated flight: feasibility, safety, efficiency, international travel, traffic volume and noise, allowing airlines to run a business, really connecting real people. Despite some maturations, new developments should extend the notion of passenger service. So far, turbofans became silent and widebodies opened ‘air-bus’ travel for widespread business, tourism or education. Today airports symbolize cities and vitalize regional economies. 2000-2010 saw the full double-decker, the new eco-friendly freighter and electronic ticketing. In technology, new winglets and neo classical engines soon will save short-range blockfuel. In systems and maintenance, integrated modular avionics and onboard data systems give new flexibility, incl by data links to ground.
Technical Paper

Applying a Concept for Robot-Human Cooperation to Aerospace Equipping Processes

Significant effort has been applied to the introduction of automation for the structural assembly of aircraft. However, the equipping of the aircraft with internal services such as hydraulics, fuel, bleed-air and electrics and the attachment of movables such as ailerons and flaps remains almost exclusively manual and little research has been directed towards it. The problem is that the process requires lengthy assembly methods and there are many complex tasks which require high levels of dexterity and judgement from human operators. The parts used are prone to tolerance stack-ups, the tolerance for mating parts is extremely tight (sub-millimetre) and access is very poor. All of these make the application of conventional automation almost impossible. A possible solution is flexible metrology assisted collaborative assembly. This aims to optimise the assembly processes by using a robot to position the parts whilst an operator performs the fixing process.
Journal Article

Skills Synergy Leading to RTM Flow Simulation Success Story

Industrial requirements imply optimizing the development cycle, reducing manufacturing costs and reaching marketable product maturity as fast as possible. The design stage often involves multiple sites and various partners. In this context, the use of computer simulation becomes absolutely necessary to meet industrial needs. Nevertheless, this activity can be effective only if it is integrated correctly in the industrial organization. In the aeronautical and space systems industry, mechanical specifications often require the use of composites reinforced by continuous carbon fibers. The goal of this article is to describe how, on a time frame of nearly twenty years, a series of scientific and technical tasks were carried out in partnership in order to develop, validate and implement Resin Transfer Molding (RTM) flow simulation and cure analysis for high performance composites. The research stage started at the university in 1991.

Care and Repair of Advanced Composites, Second Edition

This second edition has been extensively updated to keep pace with the growing use of composite materials in commercial aviation. A worldwide reference for repair technicians and design engineers, the book is an outgrowth of the course syllabus that was developed by the Training Task Group of SAE's Commercial Aircraft Composite Repair Committee (CACRC) and published as SAE AIR 4938, Composite and Bonded Structure Technician Specialist Training Document. Topics new to this edition include: Nondestructive Inspection (NDI) Methods Fasteners for Composite Materials A Method for the Surface Preparation of Metals Prior to Adhesive Bonding Repair Design Although this book has been written primarily for use in aircraft repair other applications including marine and automotive are also covered.