Refine Your Search

Topic

Search Results

Viewing 1 to 16 of 16
Video

Orbital Drilling Machine for One Way Assembly in Hard Materials

2012-03-23
In Aeronautic industry, when we launch a new industrialization for an aircraft sub assembly we always have the same questions in mind for drilling operations, especially when focusing on lean manufacturing. How can we avoid dismantling and deburring parts after drilling operation? Can a drilling centre perform all the tasks needed to deliver a hole ready to install final fastener? How can we decrease down-time of the drilling centre? Can a drilling centre be integrated in a pulse assembly line? How can we improve environmental efficiency of a drilling centre? It is based on these main drivers that AIRBUS has developed, with SPIE and SOS, a new generation of drilling centre dedicated for hard materials such as titanium, and high thicknesses. The first application was for the assembly of the primary structure of A350 engine pylons. The main solution that was implemented meeting several objectives was the development of orbital drilling technology in hard metal stacks.
Journal Article

Application of Genetic Algorithm for Preliminary Trajectory Optimization

2011-10-18
2011-01-2594
The aviation sector has played a significant role in shaping the world into what it is today. The rapid growth of global economies and the corresponding sharp rise in the number of people now wanting to travel on business and for pleasure, has largely been responsible for the development of this industry. With a predicted rise in Revenue Passenger Kilometers (RPK) by over 150% in the next 20 years, the industry will correspondingly be a significant contributor to environmental emissions. Under such circumstances optimizing aircraft trajectories for lowered emissions will play a critical role amongst various other measures, in mitigating the probable environmental effects of increased air traffic. Aircraft trajectory optimization using evolutionary algorithms is a novel field and preliminary studies have indicated that a reduction in emissions is possible when set as objectives.
Journal Article

Optimal Control to Recover a Safe Situation from Low/High-Energy Situation in Approach

2011-10-18
2011-01-2618
The main study illustrated in this paper deals with the computation of commands which allow an aircraft to recover a nominal energy trajectory from a low/high energy state during the approach phase. The commands taken into account in this paper are the slat/flap aerodynamic control surfaces which allow the aircraft to maintain the best lift performance for low velocities during the approach phase. In this study, it is supposed that the aircraft maintains a known vertical trajectory, simplified by a constant ground slope, while no engines and airbrakes are used. A non-linear optimization approach is studied in this paper and two methods are tested: a) Hermite-Simpson, trapezoidal collocation methods, b) Sequential numerical integration method. These different methods are tested and simulation results are given for comparison, with different initial velocities permitting to change the initial energy state.
Journal Article

Optimization of an Unconventional Environmental Control System Architecture

2011-10-18
2011-01-2691
The Environmental Control System is a relevant element of any conventional or More Electric Aircraft (MEA). It is either the key consumer of pneumatic power or draws a substantial load from the electric power system. The objective of this paper is to present a tool for the design of Environmental Control Systems and to apply it to an unconventional system. The approach is based on a recently proposed methodology, which is improved with respect to flexibility and ease-of-use. Furthermore, modeling and simulation of vapor compression cycles is discussed, which are candidate technological solutions for More Electric Aircraft concepts. A steady-state moving boundary method is presented to model heat exchangers for such applications. Finally, the resulting design environment is applied to optimization of an unconventional ECS architecture and exemplary results are presented.
Journal Article

Skills Synergy Leading to RTM Flow Simulation Success Story

2011-10-18
2011-01-2629
Industrial requirements imply optimizing the development cycle, reducing manufacturing costs and reaching marketable product maturity as fast as possible. The design stage often involves multiple sites and various partners. In this context, the use of computer simulation becomes absolutely necessary to meet industrial needs. Nevertheless, this activity can be effective only if it is integrated correctly in the industrial organization. In the aeronautical and space systems industry, mechanical specifications often require the use of composites reinforced by continuous carbon fibers. The goal of this article is to describe how, on a time frame of nearly twenty years, a series of scientific and technical tasks were carried out in partnership in order to develop, validate and implement Resin Transfer Molding (RTM) flow simulation and cure analysis for high performance composites. The research stage started at the university in 1991.
Technical Paper

Combination of Experimental and Computational Approaches to A320 Wing Assembly

2017-09-19
2017-01-2085
The paper is devoted to the simulation of A320 wing assembly on the base of numerical experiments carried out with the help of ASRP software. The main goal is to find fasteners’ configuration with minimal number of fastening elements that provides closing of admissible initial gaps. However, for considered junction type initial gap field is not known a priori though it should be provided as input data for computations. In order to resolve this problem the methodology of random initial gap generation based on available results of gap measurements is developed along with algorithms for optimization of fasteners' configuration on generated initial gaps. Presented paper illustrates how this methodology allows optimizing assembly process for A320 wing.
Technical Paper

Considerations on an Integral Flight Physics Model with Application to Loads Analysis

2011-10-18
2011-01-2767
Increasing technical dependencies between the engineering disciplines driving the overall design of an aircraft and improving optimization techniques that make use of these interactions blur the lines between distinct disciplines and create demand for a harmonized flight physics model. In this paper we present considerations on a general framework that allows the representation of the equations and data from various domains in an object-oriented and scalable structure. Emphasis is put on the loads aspect with the distinct fields of gust loads, maneuver loads and ground loads analysis, which are essential for structural design. A fully generic, grid based data structure is presented, which is suitable for models of different granularity and applicability. All data is represented in this general form independent of its origin and may be transformed in between the different representations using splines. Coordinate transformations are handled automatically.
Technical Paper

On-line Estimation of Longitudinal Flight Parameters

2011-10-18
2011-01-2769
The introduction of Fly-By-Wire (FBW) and the increasing level of automation contribute to improve the safety of civil aircraft significantly. These technological steps permit the development of advanced capabilities for detecting, protecting and optimizing A/C guidance and control. Accordingly, this higher complexity requires extending the availability of aircraft states, some flight parameters becoming key parameters to ensure a good behaviour of the flight control systems. Consequently, the monitoring and consolidation of these signals appear as major issues to achieve the expected autonomy. Two different alternatives occur to get this result. The usual solution consists in introducing many functionally redundant elements (sensors) to enlarge the way the key parameters are measured. This solution corresponds to the classical hardware redundancy, but penalizes the overall system performance in terms of weight, power consumption, space requirements, and extra maintenance needs.
Technical Paper

Longitudinal Handling Qualities of Conventional and Unconventional Aircraft Configurations

2011-10-18
2011-01-2762
During the conceptual design phase, the aircraft stability and control derivatives (aerodynamic coefficients) can be estimated by using fast computational means. Aerodynamic potential codes like the Vortex Lattice Method (VLM) or the Doublet Lattice Method (DLM) are very easy to use and are capable of estimating these coefficients accurately as well as providing remarkable insight into wing aerodynamics and components interaction. Compared to the VLM, the DLM (originally used for aeroelastic computations) allows prediction of the steady as well as unsteady stability and control derivatives. The relationships involving these coefficients and the airplane's dynamic behaviour are well known, like for example the one relating the pitch damping derivative and the damping ratio of the Short Period mode.
Technical Paper

Rivetless Nutplate Developments for Aerospace Applications

2011-10-18
2011-01-2756
Within this paper, the AIRBUS approach on the development of rivetless nutplates as an alternative to riveted anchor nuts is described. Within the frame of a wider analysis, it was identified that currently used riveted anchor nut elements does have disadvantages with negative impact on an optimized cost-efficient and lead-time driven design and manufacturing environment. Rivetless nutplate systems provide some features that are potentially capable to mitigate some of the identified disadvantages of riveted elements. The paper covers the key requirements and objectives that were put in place in order to identify the most beneficial solution(s). It furthermore contains detailed information on the rivetless nutplate systems selected by AIRBUS and the justification for the selection that was made.
Technical Paper

Orbital Drilling Machine for One Way Assembly in Hard Materials

2011-10-18
2011-01-2745
In Aeronautic industry, when we launch a new industrialization for an aircraft sub assembly we always have the same questions in mind for drilling operations, especially when focusing on lean manufacturing. How can we avoid dismantling and deburring parts after drilling operation? Can a drilling centre perform all the tasks needed to deliver a hole ready to install final fastener? How can we simplify specific jigs used to maintain parts during drilling operations? How can we decrease down-time of the drilling centre? Can a drilling centre be integrated in a pulse assembly line? How can we improve environmental efficiency of a drilling centre? It is based on these main drivers that AIRBUS has developed, with SPIE and SOS, a new generation of drilling centre dedicated for hard materials such as titanium, and high thicknesses. The first application was for the assembly of the primary structure of A350 engine pylons.
Technical Paper

Development of a High Temperature Power Module Technology with SiC Devices for High Density Power Electronics

2011-10-18
2011-01-2620
This paper presents the development of a high density packaging technology for wide band gap power devices, such as silicon carbide (SiC). These devices are interesting candidates for the next aircraft power electronic converters. Effectively they achieve high switching frequencies thanks to the low losses level. High switching frequencies lead to reduce the passive components size and to an overall weight reduction of power converters. Moreover, SiC devices may enable operation at junction temperatures around 250°C. The cooling requirement is much less stringent than for usual Si devices. This might considerably simplify the cooling system, and reduce the overall weight. To achieve the integration requirements for SiC devices, classical wire bonding interconnection is replaced by a stacked packaging using bump interconnection technologies, called sandwich. These technologies offer two thermal paths to drain heat out and present more power integration possibilities.
Technical Paper

The Use of RDT Nowcasting Tool for Detecting Convective Areas Associated with High Ice Water Content during HAIC/HIWC Field Campaign

2015-06-15
2015-01-2124
Glaciated icing conditions potentially leading to in-service event are often encountered in the vicinity of deep convective clouds. Nowcasting of these conditions with space-borne observations would be of a great help for improving flight safety and air-traffic management but still remains challenging. In the framework of the HAIC (High Altitude Ice Crystals) project, methods to detect and track regions of high ice water content from space-based geostationary and low orbit mission are investigated. A first HAIC/HIWC field campaign has been carried out in Australia in January-March 2014 to sample meteorological conditions potentially leading to glaciated icing conditions. During the campaign, several nowcasting tools were successfully operated such as the Rapid Development Thunderstorm (RDT) product that detects the convective areas from infrared geostationary imagery.
Technical Paper

Optimization of Automated Airframe Assembly Process on Example of A350 S19 Splice Joint

2019-09-16
2019-01-1882
The paper presents the numerical approach to simulation and optimization of A350 S19 splice assembly process. The main goal is to reduce the number of installed temporary fasteners while preventing the gap between parts from opening during drilling stage. The numerical approach includes computation of residual gaps between parts, optimization of fastener pattern and validation of obtained solution on input data generated on the base of available measurements. The problem is solved with ASRP (Assembly Simulation of Riveting Process) software. The described methodology is applied to the optimization of the robotized assembly process for A350 S19 section.
Technical Paper

Simulation of Aircraft Assembly via ASRP Software

2019-09-16
2019-01-1887
ASRP (Assembly Simulation of Riveting Process) software is a special tool for assembly process modelling for large scale airframe parts. On the base of variation simulation, ASRP provides a convenient way to analyze, verify and optimize the arrangement of temporary fasteners. During the assembly of airframe certain criteria on residual gap between parts must be fulfilled. The numerical approach implemented in ASRP allows to evaluate the quality of contact on every stage of assembly process and solve verification and optimization problems for temporary fastener patterns. The paper is devoted to description of several specialized approaches that combine statistical analysis of measured data and numerical simulation using high-performance computing for optimization of fastener patterns, calculation of forces in fasteners needed to close initial gaps, and identification of hazardous areas in junction regions via ASRP software.
Research Report

Unsettled Technology Areas in Deterministic Assembly Approaches for Industry 4.0

2021-08-20
EPR2021018
Increased production rates and cost reduction are affecting manufacturing in all mobility industry sectors. One enabling methodology that could achieve these goals in the burgeoning “Industry 4.0” environment is the optimized deterministic assembly (DA) approach. It always forms the same final structure and has a strong link to design-for-assembly and design-for-automation. The entire supply chain is considered, with drastic savings at the final assembly line level through recurring costs and lead-time reduction. Unsettled Technology Areas in Deterministic Assembly Approaches for Industry 4.0 examines the evolution of previous assembly principles that lead up to and enable the DA approach, related simulation methodologies, and undefined and unsolved links between these domains. Click here to access the full SAE EDGETM Research Report portfolio.
X