Refine Your Search

Topic

Author

Affiliation

Search Results

Video

Codes and Standards – Global Harmonization

2011-11-18
Electric vehicle codes and standards play a key role in deployment of interoperable charging and communication infrastructure. Harmonization of those standards on a global basis, even though they are not identical, they need to be compatible. There are a comprehensive set of EV standards, even standards to ensure that the EV, EVSE, energy measurement and electric utility are compatible (SAE J2953). This presentation is a summary of the state of standards and some of the commercial deployment of equipment that meets these standards. Presenter Eric Rask, Argonne National Laboratory
Video

Beyond MPG: Characterizing and Conveying the Efficiency of Advanced Plug-In Vehicles 

2011-11-08
Research in plug in vehicles (PHEV and BEV) has of course been ongoing for decades, however now that these vehicles are finally being produced for a mass market an intense focus over the last few years has been given to proper evaluation techniques and standard information to effectively convey efficiency information to potential consumers. The first challenge is the development of suitable test procedures. Thanks to many contributions from SAE members, these test procedures have been developed for PHEVs (SAE J1711 now available) and are under development for BEVs (SAE J1634 available later this year). A bigger challenge, however, is taking the outputs of these test results and dealing with the issue of off-board electrical energy consumption in the context of decades-long consumer understanding of MPG as the chief figure of merit for vehicle efficiency.
Video

Comparison of Powertrain Configuration Options for Plug-in HEVs from a Fuel Economy Perspective

2012-05-25
The first commercially available plug-in hybrid electric vehicle (PHEV), the General Motors (GM) Volt, was introduced into the market in mid-December 2010. The Volt uses a series-split powertrain architecture, which provides benefits over the series architecture that typically has been considered for use in electric-range extended vehicles (EREVs). A specialized EREV powertrain, called the Voltec, drives the Volt through its entire range of speed and acceleration with battery power alone and within the limit of battery energy, thereby displacing more fuel with electricity than a PHEV, which characteristically blends electric and engine power together during driving. This paper assesses the benefits and drawbacks of these two different plug-in hybrid electric architectures (series versus series-split) by comparing component sizes, system efficiency, and fuel consumption over urban and highway drive cycles.
Video

Technical Keynote - Introduction to EcoCAR The NeXt Challenge Year Three: Vehicle Refinement and Testing

2012-06-06
This presentation will introduce the overall goals of the EcoCAR competition in brief, and will go into the third and final year of the competition in detail. The final year of competition saw teams refining and testing their student-built advanced technology vehicles including hybrids, plug-in hybrids, hydrogen fuel cell PHEVs and one battery electric. Important events, such as the Spring Workshop chassis dynamometer testing event at the U.S. Environmental Protection agency, as well as significant competition results, such as vehicle performance, consumer acceptability and efficiency will be presented. Presenter Patrick Walsh
Video

Impact of Supervisory Control on Criteria Tailpipe Emissions for an Extended-Range Electric Vehicle

2012-06-05
The Hybrid Electric Vehicle Team of Virginia Tech participated in the three-year EcoCAR Advanced Vehicle Technology Competition organized by Argonne National Laboratory, and sponsored by General Motors and the U.S. Department of Energy. The team established goals for the design of a plug-in, range-extended hybrid electric vehicle that meets or exceeds the competition requirements for EcoCAR. The challenge involved designing a crossover SUV powertrain to reduce fuel consumption, petroleum energy use, regulated tailpipe emissions, and well-to-wheel greenhouse gas emissions. To interface with and control the hybrid powertrain, the team added a Hybrid Vehicle Supervisory Controller, which enacts a torque split control strategy. This paper builds on an earlier paper [1] that evaluated the petroleum energy use, criteria tailpipe emissions, and greenhouse gas emissions of the Virginia Tech EcoCAR vehicle and control strategy from the 2nd year of the competition.
Video

Impact of Technology on Electric Drive Fuel Consumption and Cost

2012-05-25
In support of the U.S Department of Energy's Vehicle Technologies Program, numerous vehicle technology combinations have been simulated using Autonomie. Argonne National Laboratory (Argonne) designed and wrote the Autonomie modeling software to serve as a single tool that could be used to meet the requirements of automotive engineering throughout the development process, from modeling to control, offering the ability to quickly compare the performance and fuel efficiency of numerous powertrain configurations. For this study, a multitude of vehicle technology combinations were simulated for many different vehicles classes and configurations, which included conventional, power split hybrid electric vehicle (HEV), power split plug-in hybrid electric vehicle (PHEV), extended-range EV (E-REV)-capability PHEV, series fuel cell, and battery electric vehicle.
Video

Test Results of Plug-In Vehicles According to SAE Standard Testing Practices

2012-03-27
Over the past several years, new recommended practices for testing plug-in vehicles have been developed by SAE standards committees. At first only proprietary or prototype vehicles were available to validate new procedures. However, with the recent availability of Chevy Volt and Nissan Leaf, these test procedures were put to the test in Argonne�s National Laboratory�s dynamometer test facility. Procedures for the Volt were according to the SAE J1711 procedures. The Leaf was tested according to procedures still under development in the SAE J1634 task force. Identified were aspects of the tests that were successful and areas where more development is needed. As described in SAE J2841, the Volt results were analyzed using a �utility factor� to estimate in-use expectations of electric-only miles.
Journal Article

Maximizing Net Present Value of a Series PHEV by Optimizing Battery Size and Vehicle Control Parameters

2010-10-19
2010-01-2310
For a series plug-in hybrid electric vehicle (PHEV), it is critical that batteries be sized to maximize vehicle performance variables, such as fuel efficiency, gasoline savings, and zero emission capability. The wide range of design choices and the cost of prototype vehicles calls for a development process to quickly and systematically determine the design characteristics of the battery pack, including its size, and vehicle-level control parameters that maximize the net present value (NPV) of a vehicle during the planning stage. Argonne National Laboratory has developed Autonomie, a modeling and simulation framework. With support from The MathWorks, Argonne has integrated an optimization algorithm and parallel computing tools to enable the aforementioned development process. This paper presents a study that utilized the development process, where the NPV is the present value of all the future expenses and savings associated with the vehicle.
Technical Paper

System Analysis Using Multiple Expert Tools

2011-04-12
2011-01-0754
Many of today's advanced simulation tools are suitable for modeling specific systems; however, they provide rather limited support for model building and management. Setting up a detailed vehicle simulation model requires more than writing down state equations and running them on a computer. In this paper, we describe how modern software techniques can be used to support modeling and design activities, with the objective of providing better system models more quickly by assembling these system models in a “plug-and-play” architecture. Instead of developing detailed models specifically for Argonne National Laboratory's Autonomie modeling tool, we have chosen to place emphasis on integrating and re-using the system models, regardless of the environment in which they were initially developed. By way of example, this paper describes a vehicle model composed of a detailed engine model from GT Power, a transmission from AMESim, and with vehicle dynamics from CarSim.
Technical Paper

Numerical and Optical Evolution of Gaseous Jets in Direct Injection Hydrogen Engines

2011-04-12
2011-01-0675
This paper performs a parametric analysis of the influence of numerical grid resolution and turbulence model on jet penetration and mixture formation in a DI-H2 ICE. The cylinder geometry is typical of passenger-car sized spark-ignited engines, with a centrally located single-hole injector nozzle. The simulation includes the intake and exhaust port geometry, in order to account for the actual flow field within the cylinder when injection of hydrogen starts. A reduced geometry is then used to focus on the mixture formation process. The numerically predicted hydrogen mole-fraction fields are compared to experimental data from quantitative laser-based imaging in a corresponding optically accessible engine. In general, the results show that with proper mesh and turbulence settings, remarkable agreement between numerical and experimental data in terms of fuel jet evolution and mixture formation can be achieved.
Journal Article

Characterization of the Near-Field Spray and Internal Flow of Single-Hole and Multi-Hole Sac Nozzles using Phase Contrast X-Ray Imaging and CFD

2011-04-12
2011-01-0681
It is well know that the internal flow field and nozzle geometry affected the spray behavior, but without high-speed microscopic visualization, it is difficult to characterize the spray structure in details. Single-hole diesel injectors have been used in fundamental spray research, while most direct-injection engines use multi-hole nozzle to tailor to the combustion chamber geometry. Recent engine trends also use smaller orifice and higher injection pressure. This paper discussed the quasi-steady near-nozzle diesel spray structures of an axisymmetric single-hole nozzle and a symmetric two-hole nozzle configuration, with a nominal nozzle size of 130 μm, and an attempt to correlate the observed structure to the internal flow structure using computational fluid dynamic (CFD) simulation. The test conditions include variation of injection pressure from 30 to 100 MPa, using both diesel and biodiesel fuels, under atmospheric condition.
Technical Paper

Comparison between Rule-Based and Instantaneous Optimization for a Single-Mode, Power-Split HEV

2011-04-12
2011-01-0873
Over the past couple of years, numerous Hybrid Electric Vehicle (HEV) powertrain configurations have been introduced into the marketplace. Currently, the dominant architecture is the power-split configuration, notably the input splits from Toyota Motor Sales and Ford Motor Company. This paper compares two vehicle-level control strategies that have been developed to minimize fuel consumption while maintaining acceptable performance and drive quality. The first control is rules based and was developed on the basis of test data from the Toyota Prius as provided by Argonne National Laboratory's (Argonne's) Advanced Powertrain Research Facility. The second control is based on an instantaneous optimization developed to minimize the system losses at every sample time. This paper describes the algorithms of each control and compares vehicle fuel economy (FE) on several drive cycles.
Journal Article

PHEV Energy Management Strategies at Cold Temperatures with Battery Temperature Rise and Engine Efficiency Improvement Considerations

2011-04-12
2011-01-0872
Limited battery power and poor engine efficiency at cold temperature results in low plug in hybrid vehicle (PHEV) fuel economy and high emissions. Quick rise of battery temperature is not only important to mitigate lithium plating and thus preserve battery life, but also to increase the battery power limits so as to fully achieve fuel economy savings expected from a PHEV. Likewise, it is also important to raise the engine temperature so as to improve engine efficiency (therefore vehicle fuel economy) and to reduce emissions. One method of increasing the temperature of either component is to maximize their usage at cold temperatures thus increasing cumulative heat generating losses. Since both components supply energy to meet road load demand, maximizing the usage of one component would necessarily mean low usage and slow temperature rise of the other component. Thus, a natural trade-off exists between battery and engine warm-up.
Technical Paper

Recycling of the Changing Automobile and Its Impact on Sustainability

2011-04-12
2011-01-0853
Over 250 million vehicles are operating on United States roads and highways and over 12 million of them reach the end of their useful lives annually. These end-of-life vehicles (ELVs) contain over 24 million tons (21.8 million metric tonnes) of materials including ferrous and non-ferrous metals, polymers, glass, and automotive fluids. They also contain many parts and components that are still useable and some that could be economically rebuilt or remanufactured. Dismantlers acquire the ELVs and recover from them parts for resale “as-is” or after remanufacturing. The dismantler then sells what remains of the vehicle, the “hulk”, to a shredder who shreds it to recover and sell the metals. Presently, the remaining non-metallic materials, commonly known as shredder residue, are mostly landfilled. The vehicle manufacturers, now more than ever, are working hard to build more energy efficient and safer, more affordable vehicles.
Technical Paper

Correlation of Split-Injection Needle Lift and Spray Structure

2011-04-12
2011-01-0383
While the use of injection strategies utilizing multiple injection events for each engine cycle has become common, there are relatively few studies of the spray structure of split injection events. Optical spray measurements are particularly difficult for split injection events with a short dwell time between injections, since droplets from the first injection will obscure the end of the first and the start of the second injection. The current study uses x-ray radiography to examine the near-nozzle spray structure of split injection events with a short dwell time between the injection events. In addition, x-ray phase-enhanced imaging is used to measure the injector needle lift vs. time for split injections with various dwell timings. Near the minimum dwell time needed to create two separate injection events, the spray behavior is quite sensitive to the dwell time.
Technical Paper

Plug-and-Play Software Architecture to Support Automated Model-Based Control Process

2010-10-05
2010-01-1996
To reduce development time and introduce technologies to the market more quickly, companies are increasingly turning to Model-Based Design. The development process - from requirements capture and design to testing and implementation - centers around a system model. Engineers are skipping over a generation of system design processes based on hand coding and instead are using graphical models to design, analyze, and implement the software that determines machine performance and behavior. This paper describes the process implemented in Autonomie, a plug-and-play software environment, to evaluate a component hardware in an emulated environment. We will discuss best practices and show the process through evaluation of an advanced high-energy battery pack within an emulated plug-in hybrid electric vehicle.
Technical Paper

Validation of a Line-Haul Class 8 Combination Truck

2010-10-05
2010-01-1998
The U.S. Environmental Protection Agency instrumented and tested a line-haul Class 8 tractor trailer on a 4-wheel-drive heavy-duty chassis dynamometer. A vehicle model was then developed in the Powertrain Systems Analysis Toolkit (PSAT), Argonne National Laboratory's vehicle simulation tool, using the truck technical specifications and the recorded data, which included the Portable Emissions Measurement System (PEMS) and Controller Area Network (CAN) signals. In this paper, we describe the test scenarios and the analysis performed on the data. We then present the vehicle model and assumptions. Finally, we compare the test and simulation data, including fuel consumption and component signals, as well as the main challenges specific to heavy-duty vehicle testing and simulation.
Technical Paper

Cost Effective Annual Use and Charging Frequency for Four Different Plug-in Powertrains

2013-04-08
2013-01-0494
Vehicles with electrified powertrains, such as hybrid electric vehicles (HEVs), plug-in HEV (PHEVs), and AEVs (all-electric vehicles using grid-supplied battery energy exclusively), are potentially marketable because of low operating costs, but each comes with a significant initial cost penalty in comparison to a conventional vehicle (CV) powered by an internal combustion engine. Accordingly, a high rate of utilization is necessary for cost effectiveness. This paper examines the projected future (2020) cost effectiveness of several alternative powertrains within a standard compact sedan glider: an AEV and a set of selected input-split and output-split HEV and PHEV powertrains with various battery power and energy storage capabilities. Vehicle performance and consumption rates of fuel and electricity were estimated using vehicle simulations, and vehicle prices were estimated using cost models.
Technical Paper

Development of a 3-D Model for Analyzing the Effects of Channel Geometry on Filtration Characteristics in Particulate Filter System

2013-04-08
2013-01-1583
A three-dimensional (3-D) computational fluid dynamics (CFD) code has been developed to predict flow dynamics and pressure drop characteristics in geometry-modified filters in which the normalized distance of the outlet channel plugs from the inlet has been varied at 0.25, 0.50, and 0.75. In clean filter simulations, the pressure drop in geometry-modified filters showed higher values than for conventional filters because of the significant change in the pressure field formed inside the channel that determines the amount of flow entering the modified channel. This flow through the modified channel depends on plug position initially but has a maximum limit when pressure difference and geometrical change are compromised. For soot loading simulations, a Lagrangian multiphase flow model was used to interpret the hydrodynamics of particle-laden flow with realistic inputs.
Technical Paper

A Study on the Hole-to-Hole Spray Variation Based on Nozzle Internal Structure

2013-04-08
2013-01-1611
Spray behavior is regarded as one of main factors which influence engine performance, fuel consumption and emissions for diesel engine. In practice, spray characteristics from each orifice from a multi-hole nozzle are normally arranged symmetrically, while the hole-to-hole spray variation is unavoidable. This variation will cause spatial uneven distribution of spray and combustion degrade, which will be no longer inconsiderable in face of the more and more stringent emission rules. In this paper, two methods including spray macro-characteristics experiment and separated fuel mass measurement are employed to test the hole-to-hole spray variation of two six-hole symmetric VCO injectors of different brands, and experiments are operated under different conditions including different injection pressures, back pressures and injection durations.
X