Refine Your Search

Search Results

Viewing 1 to 4 of 4
Technical Paper

Design for the NIRSpec Optical Assembly Cover

2008-06-29
2008-01-2071
NIRSpec is a near-infra-red spectrometer and one of the four instruments onboard the James Webb Space Telescope (JWST). The JWST observatory will be placed at the second Lagrange point (L2). The instrument will be operated at about 30 Kelvin. Temperature stability and controlled heat rejection to dedicated JWST radiators are important issues of the NIRSpec thermal design. Besides thermal insulation, the NIRSpec Optical Assembly Cover also has to provide light tightness and stray light suppression to prevent unwanted light entering the instrument. Air tightness is needed to allow a controlled purge gas flow for contamination prevention while allowing proper air venting during launch. Because of mass constraints a cover employing two-foil Kapton blankets supported by aluminum posts and a wire tent was chosen. Failure tolerance and cleanliness are other important design drivers. This paper describes the design solutions established to fulfil the contrary requirements
Technical Paper

Columbus ECLS Activation and Initial Operations

2008-06-29
2008-01-2135
European Space Agency's (ESA's) Columbus module was launched on February 7, 2008. This marks the completion of more than 10 years of development. It is a major step forward for Europe in the area of Environmental Control and Life Support (ECLS) as Columbus contains several major assemblies which have been developed in Europe. These include the Condensing Heat Exchanger, Condensate Water Separator and the Cabin Fans. The paper gives a short overview of the system and its features and it will report the experiences from the initial activation and operations phase.
Technical Paper

The Columbus ECLSS First Year of Operations

2009-07-12
2009-01-2414
The launch and activation of ESA's Columbus module in early 2008 marked the completion of more than 10 years of development. Since then the Columbus ECLS is operating, including its major European ECLSS assemblies such as Condensing Heat Exchanger (CHX), Condensate Water Separator, Cabin Fans and Sensors. The paper will report the experiences from the first year of operations in terms of events, failures and lessons learned. Examples of this is the description of some off-nominal situations (such as Condensate Removal and IMV Return Fan failure, and relevant troubleshooting), and the preparation to Columbus Reduced Condensation Mode, as requested by NASA in order to minimize the crew time needed to empty Condensate Water Tanks in US Lab.
Technical Paper

System Aspects for Humidity Removal under Zero Gravity

2000-07-10
2000-01-2312
The Columbus Orbital Facility (COLUMBUS) is the main European contribution to the ISS. Its Temperature and Humidity Control (THC) subsystem consists of the Condensing Heat Exchanger and Filter Assembly (CHXFA), the Condensate Water Separator Assembly (CWSA) and the Cabin Temperature Control Unit (CTCU). The paper provides a description of the THC subsystem and its equipment focusing on the humidity removal function which has shown to be the major design challenge. Design solutions have been realised by optimising all equipment of the THC with respect to its system needs. Test results both on equipment and on THC subsystem level are presented demonstrating that the humidity removal performance is adequate to meet the system requirements in the wide operational range of COLUMBUS.
X