Refine Your Search

Search Results

Viewing 1 to 11 of 11
Technical Paper

Title: Development of Reusable Body and Comfort Software Functions

The potential to reduce the cost of embedded software by standardizing the application behavior for Automotive Body and Comfort domain functions is explored in this paper. AUTOSAR, with its layered architecture and a standard definition of the interfaces for Body and Comfort application functions, has simplified the exchangeability of software components. A further step is to standardize the application behavior, by developing standard specifications for common Body and Comfort functions. The corresponding software components can be freely exchanged between different OEM/Tier-1 users, even if developed independently by multiple suppliers. In practice, individual OEM users may need to maintain some distinction in the functionality. A method of categorizing the specifications as ‘common’ and ‘unique’, and to configure them for individual applications is proposed. This allows feature variability by means of relatively simple adapter functions.
Journal Article

Tackling the Complexity of Timing-Relevant Deployment Decisions in Multicore-Based Embedded Automotive Software Systems

Multicore-based ECUs are increasingly used in embedded automotive software systems to allow more demanding automotive applications at moderate cost and energy consumption. Using a high number of parallel processors together with a high number of executed software components results in a practically unmanageable number of deployment alternatives to choose from. However correct deployment is one important step for reaching timing goals and acceptable latency, both also a must to reach safety goals of safety-relevant automotive applications. In this paper we focus at reducing the complexity of deployment decisions during the phases of allocation and scheduling. We tackle this complexity of deployment decisions by a mixed constructive and analytic approach.
Technical Paper

Implementing Mixed Criticality Software Integration on Multicore - A Cost Model and the Lessons Learned

The German funded project ARAMiS included work on several demonstrators one of which was a multicore approach on large scale software integration (LSSI) for the automotive domain. Here BMW and Audi intentionally implemented two different integration platforms to gain both experience and real life data on a Hypervisor based concept on one side as well as using only native AUTOSAR-based methods on the other side for later comparison. The idea was to obtain figures on the added overhead both for multicore as well as safety, based on practical work and close-to-production implementations. During implementation and evaluation on one hand there were a lot of valuable lessons learned about multicore in conjunction with safety. On the other hand valuable information was gathered to make it finally possible to set up a cost model for estimation of potential overhead generated by different integration approaches for safety related software functions.
Technical Paper

Communication and Information Systems - A Comparison of Ideas, Concepts and Products

How can car manufacturers, which are primary mechanical engineers, become software specialists? This is a question of prime importance for car electronics in the future. Modern vehicles offer a large number of electronic and software based functions to achieve a high level of safety, fuel economy, comfort, entertainment and security which are developed under pressure of regulations, of consumers needs and of competitive time to market aspects. This contribution draws a picture, what could be important in future for in car communication and information system in terms of development process, HW & SW architectures, partnerships in automotive industry and security of industrial properties. For this purpose the automotive development is reviewed and actual examples of system designs are given.
Technical Paper

Software tools and methods for the practice-oriented PDM integration of design and diagnostics of mechatronic systems in vehicles

a practice-oriented approach for an accelerated product development and product design process for mechatronic systems is presented. The handling of complex and versatile product data to perform this process is shown in the area of electrical drives and actuators in cars. It is discussed, how the coordination of all the necessary disciplines as development, design, testing field, specification and release management should be software supported and PDM integrated. The advantages and benefits of the presented methods are shown on particular examples. The necessary software modules are introduced, showing that the realized solution gives both opportunities - the integration into a PDM backbone and at the same time an independent communication within department and/or company. The practical way, to realize the expert-specific needs of the development department, which is not possible with a general PDM system is pointed out.
Technical Paper

Data Reduction in Automotive Multiplex Systems

Increasing demand for utilities like navigation systems or user-defined electronic phonebooks on one hand and sophisticated engine and gear controls on the other hand leads to growing bus load between distributed local control units. This paper shows the benefits and the characteristics of various state of the art data-compression algorithms and their impact on typical automotive multiplex dataclasses. The evaluation and optimization of promising algorithms can be done via a proposed “communications prototyping”-approach. The hardware/software components of such a rapid prototyping package are outlined. Finally, first performance results of suitable data-compression measures are presented.
Technical Paper

BMW-ROOM An Object-Oriented Method for ASCET

This paper presents an object-oriented method customized for a tool-assisted development of car software components. Tough market conditions motivate smart software development. ASCET SD is a tool to generate target code from graphic specifications, avoiding costly programming in C. But ASCET lacks guidelines on what to do, how to do it, in what order, like a fully equipped kitchen without a cooking book. Plans to employ the tool for BMW vehicle software sparked off demand for an adequate, object-oriented real-time methodology. We show how to scan the methodology market in order to adopt an already existing method for this purpose. The result of the adaptation of a chosen method to ASCET SD is a pragmatic version of ROOM, which we call BROOM. We present a modeling guidebook that includes process recommendations not only for the automotive sector, but for real-time software development in general.
Technical Paper

Advanced Design and Validation Techniques for Electronic Control Units

Increasing demand for dynamically controlled safety features, passenger comfort, and operational convenience in upper class automobiles requires an intensive use of electronic control units including software portions. Modeling, simulation, rapid prototyping, and verification of the software need new technologies to guarantee passenger security and to accelerate the time-to-market of new products. This paper presents the state-of-the-art of the design methods for the development of electronic control unit software at BMW. These design methods cover both discrete and continuous system parts, smoothly integrating the respective methods not merely on the code level, but on the documentation, simulation, and design level. In addition, we demonstrate two modeling and prototyping tools for discrete and continuous systems, namely Statemate and MatrixX, and discuss their advantages and drawbacks with respect to necessary prototyping demands.
Technical Paper

Automotive Electronics-A Challenge for Systems Engineering

This paper presents the challenges in automotive electronics. Considering the deficiencies of the current ECU (electronic control unit) design process, a new design process is outlined. This design process mainly focuses on the independence of the ECU hardware architecture development and the software function development.
Technical Paper

AutoMoDe - Notations, Methods, and Tools for Model-Based Development of Automotive Software

This paper describes the first results from the AutoMoDe project (Automotive Model-based Development), where an integrated methodology for model-based development of automotive control software is being developed. The results presented include a number of problem-oriented graphical notations, based on a formally defined operational model, which are associated with system views for various degrees of abstraction. It is shown how the approach can be used for partitioning comprehensive system designs for subsequent implementation-related tasks. Recent experiences from a case study of an engine management system, specific issues related to reengineering, and the current status of CASE-tool support are also presented.
Journal Article

Achieving a Scalable E/E-Architecture Using AUTOSAR and Virtualization

Today's automotive software integration is a static process. Hardware and software form a fixed package and thus hinder the integration of new electric and electronic features once the specification has been completed. Usually software components assigned to an ECU cannot be easily transferred to other devices after they have been deployed. The main reasons are high system configuration and integration complexity, although shifting functions from one to another ECU is a feature which is generally supported by AUTOSAR. The concept of a Virtual Functional Bus allows a strict separation between applications and infrastructure and avoids source code modifications. But still further tooling is needed to reconfigure the AUTOSAR Basic Software (BSW). Other challenges for AUTOSAR are mixed integrity, versioning and multi-core support. The upcoming BMW E/E-domain oriented architecture will require all these features to be scalable across all vehicle model ranges.