Refine Your Search

Topic

Author

Search Results

Technical Paper

Model-Based Calibration of an Automotive Climate Control System

2020-04-14
2020-01-1253
This paper describes a novel approach for modeling an automotive HVAC unit. The model consists of black-box models trained with experimental data from a self-developed measurement setup. It is capable of predicting the temperature and mass flow of the air entering the vehicle cabin at the various air vents. A combination of temperature and velocity sensors is the basis of the measurement setup. A measurement fault analysis is conducted to validate the accuracy of the measurement system. As the data collection is done under fluctuating ambient conditions, a review of the impact of various ambient conditions on the HVAC unit is performed. Correction models that account for the different ambient conditions incorporate these results. Numerous types of black-box models are compared to identify the best-suited type for this approach. Moreover, the accuracy of the model is validated using test drive data.
Journal Article

Possible Influences on Fuel Consumption Calculations while using the Hydrogen-Balance Method

2008-04-14
2008-01-1037
The Hydrogen-Balance equation makes it possible to calculate the fuel economy or fuel consumption of hydrogen powered vehicles simply by analyzing exhaust emissions. While the benefits of such a method are apparent, it is important to discuss possible influencing factors that may decrease Hydrogen-Balance accuracy. Measuring vehicle exhaust emissions is done with a CVS (Constant Volume Sampling) system. While the CVS system has proven itself both robust and precise over the years, utilizing it for hydrogen applications requires extra caution to retain measurement accuracy. Consideration should be given to all testing equipment, as well as the vehicle being tested. Certain environmental factors may also play a role not just in Hydrogen-Balance accuracy, but as also in other low emission testing accuracy.
Technical Paper

The Development of BMW Catalyst Concepts for LEV / ULEV and EU III / IV Legislations 6 Cylinder Engine with Close Coupled Main Catalyst

1998-02-23
980418
To meet LEV and EU Stage III emission requirements, it is necessary for new catalytic converters to be designed which exceed light-off temperature as quickly as possible. The technical solutions are secondary air injection, active heating systems such as the electrically heated catalytic converter, and the close coupled catalytic converter. Engine control functions are extensively used to heat the converter and will to play a significant role in the future. The concept of relocating the converter to a position close to the engine in an existing vehicle involves new conflicts. Examples include the space requirements, the thermal resistance of the catalytic coating and high temperature loads in the engine compartment.
Technical Paper

Experimental Investigations and Computations of Unsteady Flow Past a Real Car Using a Robust Elliptic Relaxation Closure with a Universal Wall Treatment

2007-04-16
2007-01-0104
In the present work we investigated experimentally and computationally the unsteady flow around a BMW car model including wheels*. This simulation yields mean flow and turbulence fields, enabling the study aerodynamic coefficients (drag and lift coefficients, three-dimensional/spatial wall-pressure distribution) as well as some unsteady flow phenomena in the car wake (analysis of the vortex shedding frequency). Comparisons with experimental findings are presented. The computational approach used is based on solving the complete transient Reynolds-Averaged Navier-Stokes (TRANS) equations. Special attention is devoted to turbulence modelling and the near-wall treatment of turbulence. The flow calculations were performed using a robust, eddy-viscosity-based ζ - ƒ turbulence model in the framework of the elliptic relaxation concept and in conjunction with the universal wall treatment, combining integration up to the wall and wall functions.
Technical Paper

Equations and Methods for Testing Hydrogen Fuel Consumption using Exhaust Emissions

2008-04-14
2008-01-1036
Although hydrogen ICE engines have existed in one sort or another for many years, the testing of fuel consumption by way of exhaust emissions is not yet a proven method. The current consumption method for gasoline- and diesel-fueled vehicles is called the Carbon-Balance method, and it works by testing the vehicle exhaust for all carbon-containing components. Through conservation of mass, the carbon that comes out as exhaust must have gone in as fuel. Just like the Carbon-Balance method for gas and diesel engines, the new Hydrogen-Balance equation works on the principle that what goes into the engine must come out as exhaust components. This allows for fuel consumption measurements without direct contact with the fuel. This means increased accuracy and simplicity. This new method requires some modifications to the testing procedures and CVS (Constant Volume Sampling) system.
Technical Paper

A New Method for the Investigation of Unburned Oil Emissions in the Raw Exhaust of SI Engines

1998-10-19
982438
The study of oil emission is of essential interest for the engine development of modern cars, as well as for the understanding of hydrocarbon emissions especially during cold start conditions. A laser mass spectrometer has been used to measure single aromatic hydrocarbons in unconditioned exhaust gas of a H2-fueled engine at stationary and transient motor operation. These compounds represent unburned oil constituents. The measurements were accompanied by FID and GC-FID measurements of hydrocarbons which represent the burned oil constituents. The total oil consumption has been determined by measuring the oil sampled by freezing and weighing. It has been concluded that only 10 % of the oil consumption via exhaust gas has burned in the cylinders. A correlation of the emission of single oil-based components at ppb level detected with the laser mass spectrometer to the total motor oil emission has been found.
Technical Paper

FlexRay - The Communication System for Advanced Automotive Control Systems

2001-03-05
2001-01-0676
BMW, DaimlerChrysler, Motorola and Philips present their joint development activity related to the FlexRay communication system that is intended for distributed applications in vehicles. The designated applications for powertrain and chassis control place requirements in terms of availability, reliability and data bandwidth that cannot be met by any product currently available on the market under the testing conditions encountered in an automobile. A short look back on events so far is followed by a description of the protocol and its first implementation as an integrated circuit, as well as its incorporation into a complete tool environment.
Technical Paper

Media Oriented Systems Transport (MOST®) standard for multimedia networks in automobiles

2000-04-03
2000-19-0014
The automakers that comprise MOST® describe the reasons for this decision. First, they present the automobile industry's needs relative to multimedia networks in vehicles. Then, they present the different aspects of the MOST® technology. Multimedia networks are used in the electronics market, but they do not meet the technical and industrial constraints of the automobile electronics, which is why six automakers are working on most technology under the aegis of ""Most Cooperation.'' The transmission rate is a decisive aspect in the selection of a multimedia network. The rate of sound and video applications require fiber optics. The multimedia network rate must be adequate for a vehicle equipped with the maximum number of options, but the maximum rate is limited by the number of passengers.
Technical Paper

2D Mapping and Quantification of the In-Cylinder Air/Fuel-Ratio in a GDI Engine by Means of LIF and Comparison to Simultaneous Results from 1D Raman Measurements

2001-05-07
2001-01-1977
The optimization of the vaporization and mixture formation process is of great importance for the development of modern gasoline direct injection (GDI) engines, because it influences the subsequent processes of the ignition, combustion and pollutant formation significantly. In consequence, the subject of this work was the development of a measurement technique based on the laser induced exciplex fluorescence (LIF), which allows the two dimensional visualization and quantification of the in-cylinder air/fuel ratio. A tracer concept consisting of benzene and triethylamine dissolved in a non-fluorescent base fuel has been used. The calibration of the equivalence ratio proportional LIF-signal was performed directly inside the engine, at a well known mixture composition, immediately before the direct injection measurements were started.
Technical Paper

Virtual testing driven development process for side impact safety

2001-06-04
2001-06-0251
A new simulation tool was established and approved by TRW as part of the continuous improvement of the development process. This tool allows the OEM and the system supplier to keep high quality even with further reduced development times. The introduction of the tool in a side air-bag development program makes it possible to ensure high development confidence with a reduced number of vehicle crash tests and late availability of interior component parts.
Technical Paper

HC Measurements by Means of Flame Ionization: Background and Limits of Low Emission Measurement

2003-03-03
2003-01-0387
Flame Ionization Detectors (FID) can be used to detect organic hydrocarbons that occur in plastics, lacquers, adhesives, solvents and gasoline. These substances are ionized in the hydrogen flame of the FID. The ionization current that is produced depends on the amount of hydrocarbon in the sample. With the lowering of emissions limits, measuring instruments, including the FID, have to be able to detect very low values. For SULEV (Super-Ultra Low Emissions Vehicle) measurements the accuracy and also the general applicability of the CVS (Constant Volume Sampling) measuring technique are now questioned. Basic understanding is necessary to ask the right questions. One important issue is the science behind the measurement principle of the FID. And in this case especially the influence of contamination of the operating gases, cross sensitivity and data processing on the Limit of Detection (LOD).
Technical Paper

Measurement of Reference Dynamic Pressure in Open-Jet Automotive Wind Tunnels

1992-02-01
920344
In automotive open-jet wind tunnels reference velocity is usually measured in terms of a static pressure difference between two different cross-sectional areas of the tunnel. Most commonly used are two sections within the nozzle (Method 1: ΔP-Nozzle). Sometimes, the reference velocity is deduced from the static pressure difference between settling chamber and plenum (Method 2: ΔP-Plenum). Investigations in three full-scale open-jet automotive wind tunnels have clearly shown that determination of reference dynamic pressure according to ΔP-Plenum is physically incorrect. Basically, all aerodynamic coefficients, including drag coefficient, obtained by this method are too low. For test objects like cars and vans it was found that the error ΔcD depends on the test object's drag blockage in an open-jet wind tunnel.
Technical Paper

The New BMW Climatic Testing Complex - The Energy and Environment Test Centre

2011-04-12
2011-01-0167
The Energy and Environment Test Centre (EVZ) is a complex comprising three large climatic wind tunnels, two smaller test chambers, nine soak rooms and support infrastructure. The capabilities of the wind tunnels and chambers are varied, and as a whole give BMW the ability to test at practically all conditions experienced by their vehicles, worldwide. The three wind tunnels have been designed for differing test capabilities, but share the same air circuit design, which has been optimized for energy consumption yet is compact for its large, 8.4 m₂, nozzle cross-section. The wind tunnel test section was designed to meet demanding aerodynamic specifications, including a limit on the axial static pressure gradient and low frequency static pressure fluctuations - design parameters previously reserved for larger aerodynamic or aero-acoustic wind tunnels. The aerodynamic design was achieved, in-part, by use of computational fluid dynamics and a purpose-built model wind tunnel.
Technical Paper

Local Gaussian Process Regression in Order to Model Air Charge of Turbocharged Gasoline SI Engines

2016-04-05
2016-01-0624
A local Gaussian process regression approach is presented, which allows to model nonlinearities of internal combustion engines more accurate than global Gaussian process regression. By building smaller models, the prediction of local system behavior improves significantly. In order to predict a value, the algorithm chooses the nearest training points. The number of chosen training points depends on the intensity of estimated nonlinearity. After determining the training points, a model is built, the prediction performed and the model discarded. The approach is demonstrated with a benchmark system and air charge test bed measurements. The measurements are taken from a turbocharged SI gasoline engine with both variable inlet valve lift and variable inlet and exhaust valve opening angle. The results show how local Gaussian process regression outmatches global Gaussian process regression concerning model quality and nonlinearities in particular.
Technical Paper

Realistic Driving Experience of New Vehicle Concepts on the BMW Ride Simulator

2012-06-13
2012-01-1548
Nowadays, a continually growing system complexity due to the development of an increasing number of vehicle concepts in a steadily decreasing development time forces the engineering departments in the automotive industry to a deepened system understanding. The virtual design and validation of individual components from subsystems up to full vehicles becomes an even more significant role. As an answer to the challenge of reducing complete hardware prototypes, the virtual competence in NVH, among other methods, has been improved significantly in the last years. At first, the virtual design and validation of objectified phenomena in analogy to hardware tests via standardized test rigs, e.g. four poster test rig, have been conceived and validated with the so called MBS (Multi Body Systems).
Technical Paper

On the Different Contributions of Flexible Elements to the Structural Noise of Refrigeration Compressors

2022-06-15
2022-01-0983
Air conditioning acoustics have become of paramount importance in electric vehicles, where noise from electromechanical components is no longer masked by the presence of the internal combustion engine. In a car HVAC systems, the coolant compressor is one of the most important sources in terms of vibration and noise generation. The paper, the generated structural noise is studied in detail on a prototype installation, and the noise transmission and propagation mechanisms are analyzed and discussed. Through ”in situ” measurements and virtual point transformation, the rotor unbalance forces and torque acting within the component are identified. The dynamic properties of the rubber mounts, installed between the compressor and its support, are identified thanks to matrix inversion methods. To assess the quality of the proposed procedure, the synthesized sound pressure level is compared with experimental SPL measurements in different operational conditions.
Technical Paper

A Two-Measurement Correction for the Effects of a Pressure Gradient on Automotive, Open-Jet, Wind Tunnel Measurements

2006-04-03
2006-01-0568
This paper provides a method that corrects errors induced by the empty-tunnel pressure distribution in the aerodynamic forces and moments measured on an automobile in a wind tunnel. The errors are a result of wake distortion caused by the gradient in pressure over the wake. The method is applicable to open-jet and closed-wall wind tunnels. However, the primary focus is on the open tunnel because its short test-section length commonly results in this wake interference. The work is a continuation of a previous paper [4] that treated drag only at zero yaw angle. The current paper extends the correction to the remaining forces, moments and model surface pressures at all yaw angles. It is shown that the use of a second measurement in the wind tunnel, made with a perturbed pressure distribution, provides sufficient information for an accurate correction. The perturbation in pressure distribution can be achieved by extending flaps into the collector flow.
Technical Paper

Testing Automotive Systems Modeled by Finite State Machines

1994-03-01
940136
The use of micro controllers in automotive systems renders the coordination of about 150 actors (70 electric motors, 15 magnetic valves and 50 relays). The resulting complexity of those systems as well as the requested zero defects demands time consuming testing. This work describes a method of performing test-scenarios, starting from a zero defect running specification, modeled by finite state machines. The test-scenarios are intended to determine whether a given system meets all specification requirements. First, a kind of structured modelling reactive automotive systems is deduced. Next, some important test selection methods, developed for the case the specification is given in the form of a finite state machine, are considered. Finally, a procedure and method for performing minimized complete test-scenarios for automotive systems are presented.
Technical Paper

Robust Adaptive Data-Compression for Peak-Load Reduction in Low-Speed Automotive Multiplex Systems

1994-09-01
941658
The improvement of low-speed MUX-systems in car-body areas gets important in a scenario where on one hand, the possible number of integrated local control units (LCU's) gets larger and on the other hand, the possible versions of a car range from basic to top-of-the-line. Cost and developement time can be reduced if the same MUX-System is used throughout this whole range. A possibility to realize this is the use of data-compression (DC) for data-transmission. Basic configurations integrating only a small number of LCU's of a car-MUX can communicate without using data-compression, whereas for the top-of-the-line versions, the performance can be enhanced using DC only for communication processes between additional control units causing critical peak load situations. Specifically, the use of adaptive algorithms in automotive multiplex systems is a promising way to improve the MUX's capacity performance by minimizing redundant symbols/information in peak-load situations.
Technical Paper

Influence of Plenum Dimensions on Drag Measurements in 3/4-Open-Jet Automotive Wind Tunnels

1995-02-01
951000
The size of the room surrounding the wind tunnel test section, the so called wind tunnel plenum, is always seen as an important parameter of the wind tunnel building, but has rarely been the subject of systematic investigation regarding minimal requirements to meet quality objectives for aerodynamic testing. Experimental investigations of this object were made in a quarter-scale wind tunnel (nozzle area 1.4m2). The plenum dimensions were changeable by combinations of different side wall and ceiling positions. The results have shown, that the plenum can have a significant effect on the flow around the vehicle and therefore on the measured forces. Drag coefficient is under prediced if the wind tunnel plenum is too small. Recommendations are provided for the geometric dimensions of a wind tunnel plenum. The data obtained are a valuable tool for the layout of wind tunnel design concepts and for the evaluation of interference free wind tunnel simulation.
X