Refine Your Search

Search Results

Viewing 1 to 11 of 11
Journal Article

Achieving a Scalable E/E-Architecture Using AUTOSAR and Virtualization

2013-04-08
2013-01-1399
Today's automotive software integration is a static process. Hardware and software form a fixed package and thus hinder the integration of new electric and electronic features once the specification has been completed. Usually software components assigned to an ECU cannot be easily transferred to other devices after they have been deployed. The main reasons are high system configuration and integration complexity, although shifting functions from one to another ECU is a feature which is generally supported by AUTOSAR. The concept of a Virtual Functional Bus allows a strict separation between applications and infrastructure and avoids source code modifications. But still further tooling is needed to reconfigure the AUTOSAR Basic Software (BSW). Other challenges for AUTOSAR are mixed integrity, versioning and multi-core support. The upcoming BMW E/E-domain oriented architecture will require all these features to be scalable across all vehicle model ranges.
Technical Paper

2D Mapping and Quantification of the In-Cylinder Air/Fuel-Ratio in a GDI Engine by Means of LIF and Comparison to Simultaneous Results from 1D Raman Measurements

2001-05-07
2001-01-1977
The optimization of the vaporization and mixture formation process is of great importance for the development of modern gasoline direct injection (GDI) engines, because it influences the subsequent processes of the ignition, combustion and pollutant formation significantly. In consequence, the subject of this work was the development of a measurement technique based on the laser induced exciplex fluorescence (LIF), which allows the two dimensional visualization and quantification of the in-cylinder air/fuel ratio. A tracer concept consisting of benzene and triethylamine dissolved in a non-fluorescent base fuel has been used. The calibration of the equivalence ratio proportional LIF-signal was performed directly inside the engine, at a well known mixture composition, immediately before the direct injection measurements were started.
Technical Paper

Virtual testing driven development process for side impact safety

2001-06-04
2001-06-0251
A new simulation tool was established and approved by TRW as part of the continuous improvement of the development process. This tool allows the OEM and the system supplier to keep high quality even with further reduced development times. The introduction of the tool in a side air-bag development program makes it possible to ensure high development confidence with a reduced number of vehicle crash tests and late availability of interior component parts.
Technical Paper

BMW-ROOM An Object-Oriented Method for ASCET

1998-02-23
981014
This paper presents an object-oriented method customized for a tool-assisted development of car software components. Tough market conditions motivate smart software development. ASCET SD is a tool to generate target code from graphic specifications, avoiding costly programming in C. But ASCET lacks guidelines on what to do, how to do it, in what order, like a fully equipped kitchen without a cooking book. Plans to employ the tool for BMW vehicle software sparked off demand for an adequate, object-oriented real-time methodology. We show how to scan the methodology market in order to adopt an already existing method for this purpose. The result of the adaptation of a chosen method to ASCET SD is a pragmatic version of ROOM, which we call BROOM. We present a modeling guidebook that includes process recommendations not only for the automotive sector, but for real-time software development in general.
Technical Paper

Design for Environmental Compatibility of Automobiles - New Life-Cycle Management Tools in the BMW Product Development Process -

1997-04-08
971192
The environmental impact of automobiles and components is of growing importance both in the public discussion and in the complex decision finding process for future car concepts. Especially more and more conflicts of objectives occur between technical, economical, ecological and political requirements. For a lasting improvement of environmental compatibility and recyclability as an element of the so-called „sustainable development” of automobiles and components, BMW is the first carmaker which has developed quantitative management tools /1, 2/. These component related instruments enable designers in the product development phase to evaluate different component variations practice-oriented and with an ecological perspective in mind. In this endeavor, BMW is placing its bets on „intelligent lightweight construction”, i. e., the ecologically-economically best component solution.
Technical Paper

AutoMoDe - Notations, Methods, and Tools for Model-Based Development of Automotive Software

2005-04-11
2005-01-1281
This paper describes the first results from the AutoMoDe project (Automotive Model-based Development), where an integrated methodology for model-based development of automotive control software is being developed. The results presented include a number of problem-oriented graphical notations, based on a formally defined operational model, which are associated with system views for various degrees of abstraction. It is shown how the approach can be used for partitioning comprehensive system designs for subsequent implementation-related tasks. Recent experiences from a case study of an engine management system, specific issues related to reengineering, and the current status of CASE-tool support are also presented.
Technical Paper

New Acoustic Test Facilities of BMW

1985-05-15
850992
BMW has introduced new test stands for noise measurements on passenger cars and motorcycles. Information is given on room conditions, machinery equipment, sound levels, frequency ranges and types of measurement. The semi-anechoic room is designed for measuring the sound distribution emitted by a single vehicle. Road influence is simulated by a reflecting floor and a roller-dynamometer. The free field sound distribution in terms of distance and direction is measured in the anechoic room. This room has high-precision installations for sound source identification and noise mapping. The reverberation room serves to measure sound power emitted by the test object. Its second purpose is to subject the bodywork to a high-power external sound source and to measure the sound-deadening effect of the passenger compartment. In conclusion, the presentation provides reports on the initial experience with these test facilities.
Technical Paper

Application of a New Method for On-Line Oil Consumption Measurement

1999-10-25
1999-01-3460
Fast and exact measurement of engine oil consumption is a very difficult task. Our aim is to achieve this measurement at a common test bed without engine modifications. We resolved this problem with a new technique using Laser Mass Spectrometry to detect appropriate tracers in the raw engine exhaust. The tracers are added to the engine oil. to the engine oil. For detection of these tracers we use a Laser Mass Spectrometer (LAMS). This is a combination of resonant laser ionization (with an all-solid-state laser) and Time-of-Flight Mass Spectrometry. Currently this is the only way to detect oil originated molecules (like our tracers) in the raw exhaust very fast (50 Hz) and sensitive (ppb-region). Thus, engine mapping of oil consumption over load and speed can be performed in 1-2 days with about 90 measurements. Even measurement during dynamic engine operation is possible, but not quantitative (due to the lack of information about dynamic exhaust gas mass flow).
Technical Paper

Modeling of Engine Exhaust Acoustics

1999-05-17
1999-01-1665
Exhaust acoustics simulation is an important part of the exhaust system process. Especially important is the trend towards a coupled approach to performance and acoustics design. The present paper describes a new simulation tool developed for such coupled simulations. This tool is based on a one-dimensional fluid dynamics solution of the flow in the engine manifolds and exhaust and intake elements. To represent the often complex geometries of mufflers, an easy-to-use graphical pre-processor is provided, with which the user builds a model representation of mufflers using a library of basic elements. A comparison made to two engines equipped with exhaust silencers, shows that the predictions give good results.
Technical Paper

Structural Modelling of Car Panels Using Holographic Modal Analysis

1999-05-17
1999-01-1849
In order to optimise the vibro-acoustic behaviour of panel-like structures in a more systematic way, accurate structural models are needed. However, at the frequencies of relevance to the vibro-acoustic problem, the mode shapes are very complex, requiring a high spatial resolution in the measurement procedure. The large number of required transducers and their mass loading effects limit the applicability of accelerometer testing. In recent years, optical measuring methods have been proposed. Direct electronic (ESPI) imaging, using strobed continuous laser illumination, or more recently, pulsed laser illumination, have lately created the possibility to bring the holographic testing approach to the level of industrial applicability for modal analysis procedures. The present paper discusses the various critical elements of a holographic ESPI modal testing system.
Technical Paper

Investigations of Automotive Defroster and Windshield Flow

2001-10-01
2001-01-3441
The specification of automotive ventilation / defrosting systems has often utilized “trial-and-error” and “prior experience” techniques. But design development and production efficiency has generated a strong interest in using more sophisticated design tools such as computational fluid dynamics. For this purpose a joint experimental and numerical study was undertaken. This comprehensive investigation was divided into two parts. First, the three dimensional defroster flow field was measured using LDA in an actual automobile. Second, LDA and infrared thermography was used to map the flow and temperature fields for a two dimensional jet impinging upon a slanted plate -- a simplified representation of a car defroster geometry.
X