Refine Your Search

Search Results

Viewing 1 to 4 of 4
Technical Paper

Uncertainty Quantification in Vibroacoustic Analysis of a Vehicle Body Using Generalized Polynomial Chaos Expansion

In order to perform reliable vibroacoustic predictions in the early design phase, it is essential to include uncertainties in the simulation process. In this contribution, uncertainties are quantified using the generalized Polynomial Chaos (gPC) expansion in combination with a Finite Element (FE) model of a vehicle body in white. The objective is to particularly investigate the applicability of the gPC method in the industrial context with a high number of uncertain parameters and computationally expensive models. A non-intrusive gPC expansion of first and second order is implemented and the approximation of a stochastic response process is compared to a Latin Hypercube Sampling (LHS) based reference solution with special regard to accuracy and computational efficiency. Furthermore, the method is examined for other input distributions and transferred to other FE models in order to verify the applicability of the gPC method in practical applications.
Journal Article

Timing Evaluation in E/E Architecture Design at BMW

Timing evaluation methods help to design a robust and extendible E/E architecture (electric/electronic). BMW has introduced the systematic application of such methods in the E/E design process within the last three years. Meanwhile, most of the architectural changes are now verified by a tool-based, automatic real-time analysis. This has increased the accuracy of the network planning and productivity of the BMW network department. In this paper, we give an overview of the actual status of timing evaluations in BMW's E/E architecture design. We discuss acceptance criteria, analysis metrics, and design rules, as far as these are related to timing. We look specifically at automation options, as these improve the productivity further. We will see that timing analysis has matured and should be mandatory for application in mass production E/E architecture development. At the same time, there is room for future improvements.
Technical Paper

Sizing in Conceptual Design at BMW

In the early stages of conceptual design the available geometric data are very coarse and the lifespan of a design idea is very short. The structural evaluation and improvement of a design has to take both facts into account. Its focus is on the total vehicle and its performance. This can be estimated by a modeling technique, which is adequate for the lack of geometric details. Static and dynamic global stiffness as well as some aspects of crash and NVH have to be considered. Optimization will lead to the proper sizing and some indication of the potential of the structure. In order to maintain high quality standards this approach has to be supported by specialized CAE tools and extensive rules on modeling techniques and analysis procedures.
Technical Paper

Automotive Electronics-A Challenge for Systems Engineering

This paper presents the challenges in automotive electronics. Considering the deficiencies of the current ECU (electronic control unit) design process, a new design process is outlined. This design process mainly focuses on the independence of the ECU hardware architecture development and the software function development.