Refine Your Search

Search Results

Viewing 1 to 5 of 5
Technical Paper

Synergetic 1D-3D-Coupling in Engine Development Part I: Verification of Concept

This paper introduces an innovative approach, named synergetic 1D-3D-Coupling, by using synergy effects of 1D and 3D simulation in order to bring down modeling and simulation efforts. At the same time the methodology sustains the spatial resolution of a 3D model. This goal is reached by reducing the 3D fluid side with its time consuming continuity, momentum, energy and turbulence equations to a simple but precise 1D model. Because of the solid structure staying three dimensional, heat flux direction and spatial resolution have 3D accuracy but short calculation times due to the simple heat diffusion equation to be solved. The 1D model is represented by an automatically generated equation system which is capable of considering transient effects. The energy transfer between 1D fluid model and 3D structure model is realized through a neutral 1D-3D-coupling program and the application of the fluid element specific Nusselt correlations.
Technical Paper

Tire and Car Contribution and Interaction to Low Frequency Interior Noise

A joint study was conducted between BMW and Goodyear with the objective of analysing the cause and identifying methods to reduce the structure-borne interior noise in a vehicle driving on rough road surfaces. A vibro-acoustic characterization of the car was performed by measuring the car vibro-acoustic transfer functions and by using a transfer path analysis technique to identify the main suspension parts affecting the interior noise at target frequencies. The vibration transmissibility characteristics of the tire were measured and also simulated by Finite Element in [1-200Hz] frequency range. The vibro-acoustic interaction between the tire and car sub-systems was examined. A Finite Element sensitivity analysis was used to define and build new prototype tires. A 3dB(A) interior noise improvement was obtained with these new tires at target frequencies.
Technical Paper

Structural Modelling of Car Panels Using Holographic Modal Analysis

In order to optimise the vibro-acoustic behaviour of panel-like structures in a more systematic way, accurate structural models are needed. However, at the frequencies of relevance to the vibro-acoustic problem, the mode shapes are very complex, requiring a high spatial resolution in the measurement procedure. The large number of required transducers and their mass loading effects limit the applicability of accelerometer testing. In recent years, optical measuring methods have been proposed. Direct electronic (ESPI) imaging, using strobed continuous laser illumination, or more recently, pulsed laser illumination, have lately created the possibility to bring the holographic testing approach to the level of industrial applicability for modal analysis procedures. The present paper discusses the various critical elements of a holographic ESPI modal testing system.
Technical Paper

Digital Aeroacoustics Design Method of Climate Systems for Improved Cabin Comfort

Over the past decades, interior noise from wind noise or engine noise have been significantly reduced by leveraging improvements of both the overall vehicle design and of sound package. Consequently, noise sources originating from HVAC systems (Heat Ventilation and Air Conditioning), fans or exhaust systems are becoming more relevant for perceived quality and passenger comfort. This study focuses on HVAC systems and discusses a Flow-Induced Noise Detection Contributions (FIND Contributions) numerical method enabling the identification of the flow-induced noise sources inside and around HVAC systems. This methodology is based on the post-processing of unsteady flow results obtained using Lattice Boltzmann based Method (LBM) Computational Fluid Dynamics (CFD) simulations combined with LBM-simulated Acoustic Transfer Functions (ATF) between the position of the sources inside the system and the passenger’s ears.
Technical Paper

Prediction of Eigenfrequencies and Eigenmodes of Seatbelt Retractors in the Vehicle Environment, Supporting an Acoustically Optimal Retractor Integration by CAE

From an acoustical point of view, the integration of seatbelt retractors in a vehicle is a real challenge that has to be met early in the vehicle development process. The buzz and rattle noise of seat belt retractors is a weak yet disturbing interior noise. Street irregularities excite the wheels and this excitation is transferred via the car body to the mounting location of the retractor. Ultimately, the inertia sensor of the locking mechanism is also excited. This excitation can be amplified by structural resonances and generate a characteristic impact noise. The objective of this paper is to describe a simulation method for an early development phase that predicts the noise-relevant low frequency local modes and consequently the contact of the retractor with the mounting panel of the car body via the finite element method.