Refine Your Search

Topic

Search Results

Technical Paper

The Development of BMW Catalyst Concepts for LEV / ULEV and EU III / IV Legislations 6 Cylinder Engine with Close Coupled Main Catalyst

1998-02-23
980418
To meet LEV and EU Stage III emission requirements, it is necessary for new catalytic converters to be designed which exceed light-off temperature as quickly as possible. The technical solutions are secondary air injection, active heating systems such as the electrically heated catalytic converter, and the close coupled catalytic converter. Engine control functions are extensively used to heat the converter and will to play a significant role in the future. The concept of relocating the converter to a position close to the engine in an existing vehicle involves new conflicts. Examples include the space requirements, the thermal resistance of the catalytic coating and high temperature loads in the engine compartment.
Technical Paper

New Catalyst Preparation Procedure for OBDII-Monitoring Requirements

2001-03-05
2001-01-0933
In order to match catalyst OBDII conditions the common procedure is oven aging with air, which is not suitable for complete converter systems due to mantle corrosion. The goal was, therefore, to find an alternative procedure to ensure a defined catalyst aging that would match 1,75 times the emission standard and is also good for SULEV. The new procedure currently being developed allows the aging of metal and ceramic catalysts as well as complete catalyst systems. The paper will present the aging process, emission data of fresh and aged catalysts and the feedback to the test car OBDII system.
Technical Paper

Application Guideline to Define Catalyst Layout for Maximum Catalytic Efficiency

2001-03-05
2001-01-0929
The influence of physical parameters of the catalyst's substrate such as thermal mass, hydraulic diameter and geometric surface area on catalyst's efficiency is well known as published in numerous works. This paper will show interactions of these parameters and will provide a guideline on how to design the optimum system for a specific application, taking into account system's back pressure and system costs. Based on engine test bench results that show the influence of the physical parameters, the results for the optimized design regarding emission tests and maximum conversion rate at higher loads will be demonstrated.
Technical Paper

Study of Modern Application Strategies for Catalytic Aftertreatment Demonstrated on a Production V6 Engine

2001-03-05
2001-01-0925
A study was performed to develop optimum design strategies for a production V6 engine to maximize catalyst performance at minimum pressure loss and at minimum cost. Test results for an advanced system, designed to meet future emission limits on a production V6 vehicle, are presented based on FTP testing. The on-line pressure loss and temperature data serves to explain the functioning of the catalyst.
Technical Paper

New Approaches to Catalyst Substrate Application for Diesel Engines

2001-03-05
2001-01-0189
Nearly all real Diesel engine operation is leading to low exhaust temperatures. Standard catalyst technique remains therefore for significant time below light off. To improve the conversion behavior two approaches were made: placement of tailor fitted catalysts as close as possible to the engine exhaust port before turbocharger and usage of close coupled catalysts with the so-called hybrid design. Both measures are providing visible progress in reducing Diesel engine emissions. Tests were made with modern Diesel engines both for passenger cars and heavy duty vehicles.
Technical Paper

Next Generation Catalysts are Turbulent:Development of Support and Coating

2004-03-08
2004-01-1488
Future catalyst systems need to be highly efficient in a limited packaging space. This normally leads to a design where the flow distribution, in front of the catalyst, is not perfectly uniform. Measurements on the flow test bench show that the implementation of perforated foils for the corrugated and flat foils has the capability to distribute the flow within the channels in the radial direction so that the maximum of the given catalyst surface is of use, even under very poor uniformity indices. Therefore a remarkable reduction in back pressure is measured. Emission results demonstrate cold start improvement due to reduced heat capacity. The use of LS - structured ( Longitudinal structured ) corrugated foils creates a high turbulence level within the single channels. The substrate lights-up earlier and the maximum conversion efficiency is reached more quickly.
Technical Paper

Application of metal-supported catalysts for diesel engines

2001-09-23
2001-24-0059
Nearly all real diesel engines operations are leading to low exhaust temperatures. Standard catalyst technique remains therefore for significant time below light-off. To improve the conversion behavior two approaches were made: placement of tailor-fitted catalysts as close as possible to the engine exhaust port before turbocharger and usage of close coupled catalysts with the so-called hybrid design. Both measures are providing visible progress in reducing diesel engine emissions. Tests were made with modern diesel engines both for passenger cars and heavy-duty vehicles.
Technical Paper

Advanced Performance of Metallic Converter Systems Demonstrated on a Production V8 Engine

2002-03-04
2002-01-0347
It has been shown within the catalyst industry that the emission performance with higher cell density technology and therefore with higher specific geometric area is improved. The focus of this study was to compare the overall performance of high cell density catalysts, up to 1600cpsi, using a MY 2001 production vehicle with a 4.7ltr.V8 engine. The substrates were configured to be on the edge of the design capability. The goal was to develop cost optimized systems with similar emission and back pressure performance, which meet physical and production requirements. This paper will present the results of a preliminary computer simulation study and the final emission testing of a production vehicle. For the pre-evaluation a numerical simulation model was used to compare the light-off performance of different substrate designs in the cold start portion of the FTP test cycle.
Technical Paper

A Computational and Experimental Analysis for Optimization of Cell Shape in High Performance Catalytic Converters

2002-03-04
2002-01-0355
The effects of the internal geometry of catalytic converter channels on flow characteristics; exhaust backpressure and overall conversion efficiency have been investigated by means of both numerical simulations and experimental investigations. The numerical work has been carried out by means of a micro scale numerical tool specifically tailored for flow characteristics within converter channels. The results are discussed with aid of flow distribution patterns within the single cell and backpressure figures along the catalyst channel. The results of the numerical investigation provide information about the most efficient channel shapes. An experimental validation of the simulated results has been carried out with a production 3.6 liter, 6-cylinder engine on a dynamic test bench. Both modal and bag emission data have been measured during the FTP-Cycle.
Technical Paper

A Metal Substrate with Integrated Oxygen Sensor; Functionality and Influence on Air/Fuel Ratio Control

2003-03-03
2003-01-0818
In order to achieve ultra low emission levels with three-way catalysts, an early accurate air/fuel ratio control is essential. Positioning the oxygen sensor in the first part of the substrate helps to protect the oxygen sensor from being splashed by water during cold start, so that early heating and activation becomes a less limiting factor. For emission control purpose, a position of a rear sensor in the warm part of the catalyst gives improved possibilities for oxygen buffer control during catalyst warming up conditions. This enhances balancing HC and NOx in an early phase. In addition, for OBD reasons it is possible to locate the sensor in any axial position in the catalyst, which improves design possibilities for cold start detection, even for single brick catalyst systems. The paper describes the construction of the catalyst with an integrated oxygen sensor.
Technical Paper

Benefits of LS-Design™, a Structured Metal Foil for Two and Three Wheelers Catalyst Substrates, to Minimize Catalyst Volumes, PGM Loads and the Route Towards Low NOx Emissions

2011-10-06
2011-28-0042
More efficient and durable catalytic converters for the two- and three-wheeler industry in developing countries are required at an affordable cost to reduce vehicle emissions, to maintain them at a low level and therefore to participate in a cleaner and healthier environment. This particularly is true nowadays, because the demand and prices of Platinum Group Metal (PGM) for catalyst are continuously increasing due to i) the worldwide progressive implementation of motorcycles emission legislations similar to Euro 3 Stage requiring catalysts, ii) the need for non-road diesel vehicles to be equipped now with catalyst systems, and iii) the constant increase of the worldwide automobile market. A new generation of metallic substrates with structured foils for catalytic converters is proven to be capable of improving conversion behavior, even with smaller catalyst size.
Technical Paper

Use of a Mass Spectrometer to Continuously Monitor H2S and SO2 in Automotive Exhaust

1990-02-01
900272
In studying H2S emissions, it is desirable to have an analytical technique which is rapid, continuous, accurate and easy to use in a laboratory or vehicle exhaust environment. Typically, H2S has been measured using the EPA impinger method with collection times on the order of 1 to 2 minutes. Other techniques have been developed with significantly shorter response times. However, it has been shown that the major release of H2S occurs in less than 20 seconds after a vehicle changes from rich to lean operation. Therefore, it is highly desirable to have an H2S analytical technique with a response time of less than 10 seconds. In this paper, the benefits of use of a chemical ionization mass spectrometer (CIMS) to continuously monitor H2S and SO2, emissions are reported. Using the CIMS technique, the effects of several operating parameters on the release of H2S and SO2 from automotive catalysts were studied.
Technical Paper

Heated Catalytic Converter Competing Technologies to Meet LEV Emission Standards

1994-03-01
940470
Apart from the reduction of engine-out emissions from the powerplant, the development of an efficient and reliable catalytic converter heating system is an important task of automotive engineering in the future to meet standards that will require reduction of cold start emissions. Carrying out a comprehensive study in this field, BMW has tested and evaluated possible solutions to this challenge. In additon to the electrically heated catalytic converter (E-cat) and the afterburner chamber, an incorporated burner system would meet the requirement for fast catalyst light-off in the future, particularly in the case of larger engines.
Technical Paper

Electrically Heated Catalytic Converter (EHC) in the BMW ALPINA B12 5.7 Switch-Tronic

1996-02-01
960349
The production of the BMW ALPINA B12 5.7 with Switch-Tronic transmission provides the markets of Europe and Japan with an exclusive, luxury-orientated, high performance limited series limousine. This is the first vehicle worldwide to be fitted with the progressive exhaust gas aftertreatment technology known as the Electrically Heated Catalyst (EHC), in which the effectiveness of the power utilized is increased significantly by an alternating heating process for both catalytic converters. Only since this achievement has the implementation of the EHC been viable without extensive modification to the battery and alternator. With this exhaust gas aftertreatment concept, the emissions of this high performance vehicle will fall to less than half the maximum permissible for compliance with 1996 emission standards.
Technical Paper

Research Results on Processes and Catalyst Materials for Lean NOx Conversion

1996-10-01
962041
In a joint research project between industrial companies and a number of research institutes, nitrogen oxide conversion in oxygen containing exhaust gas has been investigated according to the following procedure Basic investigations of elementary steps of the chemical reaction Production and prescreening of different catalytic material on laboratory scale Application oriented screening of industrial catalyst material Catalyst testing on a lean bum gasoline engine, passenger car diesel engines (swirl chamber and DI) and on a DI truck engine Although a number of solid body structures show nitrogen oxide reduction by hydrocarbons, only noble metal containing catalysts and transition metal exchanged zeolites gave catalytic efficiencies of industrial relevance. A maximum of 25 % NOx reduction was found in the European driving cycle for passenger cars, about 40 % for truck engines in the respective European test.
Technical Paper

Optimisation Development of Advanced Exhaust Gas After-treatment Systems for Automotive Applications

2005-05-11
2005-01-2157
Future emission legislation can be met through substantial improvement in the effectiveness of the exhaust gas after-treatment system, the engine and the engine management system. For the catalytic converter, differentiation is necessary between the cold start behavior and the effectiveness at operating temperature. To be catalytically effective, a converter must be heated by the exhaust gas up to its light-off temperature. The major influential parameter for the light-off still is the supply of heat from the exhaust gas. Modification of the cold start calibration of engine control such as spark retard or increased idle speed can increase the temperature level of the exhaust gas. One further possibility is represented by a reduction of the critical mass ahead of the catalyst (exhaust manifold and pipe). Nevertheless the best measure to obtain optimal cold start effectiveness still seems to be locating the converter close to the engine.
Technical Paper

Particulate Trap Technology for Light Duty Vehicles with a New Regeneration Strategy

2000-06-19
2000-01-1924
A particulate trap with combined regeneration has been developed for use in light duty vehicles with diesel engines. This new system was tested first on an engine test rig. On-road vehicle tests are going on since August 1998. The results obtained clearly demonstrate the feasibility of this system. With this system trap regeneration has to be ensured under worst case conditions (exhaust gas temperature<400° C). To meet this requirement electrical heating in combination with a fuel-borne catalyst is applied. Different filter materials such as cordierite wall flow and silicon carbide monoliths were tested on the engine test rig. The paper reports on results from the engine test rig as well as from on-road vehicle testing. An overview about pre-heating and regeneration examples are given and energy balances are presented.
Technical Paper

The Development of a BMW Catalyst Concept for LEV/EU3 Legislation for a 8 Cylinder Engine by Using Thin Wall Ceramic Substrates

1999-03-01
1999-01-0767
For the BMW V8 engine, a new LEV/EU3 emission concept has been developed by improvements to the previous engine management and secondary air supply and a complete new exhaust system. Beside the emission limits, also high engine output targets and high operating reliability were targeted. In addition the new exhaust system had to meet low cost targets. Based on these requirements an exhaust concept with separate pre catalyst and main catalyst was chosen. To reduce the heat mass and to optimize the pressure drop, 4.3mil/400cpsi thin wall ceramic substrates were used for the pre and main catalyst.
Technical Paper

Recycling Technology for Metallic Substrates: A Closed Cycle

2000-03-06
2000-01-0596
Emissions during the useage phase of vehicles are of increasing interest in environmental protection, and consequently, there is considerable interest in exhaust systems. The automotive exhaust system including the catalytic converter is, because of the precious metals in the catalyst, of particular interest for the recycling of automotive parts. The paper will describe the recycling technology of ceramic and metal catalyst substrates. The process will be analyzed in detail with the example of metal supports. As a result the complete life cycle and the recycling efficiency are presented.
X