Refine Your Search

Topic

Author

Affiliation

Search Results

Video

BMW Technology/Strategy Regarding EV

2011-11-04
The BMW Group has introduced electric cars to the market with the MINI E already in 2009. The next step will be the launch of the BMW ActiveE in 2011, followed by the revolutionary Mega City Vehicle in 2013. The presentation will explain the BMW Group strategy for implementing sustainable mobility. A focus will be emobility, the use of carbon fiber and the holistic sustainability approach of BMW Group?s project i. Reference will be made to the research results of the MINI E projects in the US and in Europe. Presenter Andreas Klugescheid, BMW AG
Technical Paper

Uncertainty Quantification in Vibroacoustic Analysis of a Vehicle Body Using Generalized Polynomial Chaos Expansion

2020-09-30
2020-01-1572
In order to perform reliable vibroacoustic predictions in the early design phase, it is essential to include uncertainties in the simulation process. In this contribution, uncertainties are quantified using the generalized Polynomial Chaos (gPC) expansion in combination with a Finite Element (FE) model of a vehicle body in white. The objective is to particularly investigate the applicability of the gPC method in the industrial context with a high number of uncertain parameters and computationally expensive models. A non-intrusive gPC expansion of first and second order is implemented and the approximation of a stochastic response process is compared to a Latin Hypercube Sampling (LHS) based reference solution with special regard to accuracy and computational efficiency. Furthermore, the method is examined for other input distributions and transferred to other FE models in order to verify the applicability of the gPC method in practical applications.
Technical Paper

Title: Development of Reusable Body and Comfort Software Functions

2013-04-08
2013-01-1403
The potential to reduce the cost of embedded software by standardizing the application behavior for Automotive Body and Comfort domain functions is explored in this paper. AUTOSAR, with its layered architecture and a standard definition of the interfaces for Body and Comfort application functions, has simplified the exchangeability of software components. A further step is to standardize the application behavior, by developing standard specifications for common Body and Comfort functions. The corresponding software components can be freely exchanged between different OEM/Tier-1 users, even if developed independently by multiple suppliers. In practice, individual OEM users may need to maintain some distinction in the functionality. A method of categorizing the specifications as ‘common’ and ‘unique’, and to configure them for individual applications is proposed. This allows feature variability by means of relatively simple adapter functions.
Journal Article

Timing Evaluation in E/E Architecture Design at BMW

2014-04-01
2014-01-0317
Timing evaluation methods help to design a robust and extendible E/E architecture (electric/electronic). BMW has introduced the systematic application of such methods in the E/E design process within the last three years. Meanwhile, most of the architectural changes are now verified by a tool-based, automatic real-time analysis. This has increased the accuracy of the network planning and productivity of the BMW network department. In this paper, we give an overview of the actual status of timing evaluations in BMW's E/E architecture design. We discuss acceptance criteria, analysis metrics, and design rules, as far as these are related to timing. We look specifically at automation options, as these improve the productivity further. We will see that timing analysis has matured and should be mandatory for application in mass production E/E architecture development. At the same time, there is room for future improvements.
Technical Paper

The BMW AVZ Wind Tunnel Center

2010-04-12
2010-01-0118
The new BMW Aerodynamisches Versuchszentrum (AVZ) wind tunnel center includes a full-scale wind tunnel, "The BMW Windkanal" and an aerodynamic laboratory "The BMW AEROLAB." The AVZ facility incorporates numerous new technology features that provide design engineers with new tools for aerodynamic optimization of vehicles. The AVZ features a single-belt rolling road in the AEROLAB and a five-belt rolling road in the Windkanal for underbody aerodynamic simulation. Each of these rolling road types has distinct advantages, and BMW will leverage the advantages of each system. The AEROLAB features two overhead traverses that can be configured to study vehicle drafting, and both static and dynamic passing maneuvers. To accurately simulate "on-road" aerodynamic forces, a novel collector/flow stabilizer was developed that produces a very flat axial static pressure distribution. The flat static pressure distribution represents a significant improvement relative to other open jet wind tunnels.
Technical Paper

The New BMW Climatic Testing Complex - The Energy and Environment Test Centre

2011-04-12
2011-01-0167
The Energy and Environment Test Centre (EVZ) is a complex comprising three large climatic wind tunnels, two smaller test chambers, nine soak rooms and support infrastructure. The capabilities of the wind tunnels and chambers are varied, and as a whole give BMW the ability to test at practically all conditions experienced by their vehicles, worldwide. The three wind tunnels have been designed for differing test capabilities, but share the same air circuit design, which has been optimized for energy consumption yet is compact for its large, 8.4 m₂, nozzle cross-section. The wind tunnel test section was designed to meet demanding aerodynamic specifications, including a limit on the axial static pressure gradient and low frequency static pressure fluctuations - design parameters previously reserved for larger aerodynamic or aero-acoustic wind tunnels. The aerodynamic design was achieved, in-part, by use of computational fluid dynamics and a purpose-built model wind tunnel.
Technical Paper

Extraction of Static Car Body Stiffness from Dynamic Measurements

2010-04-12
2010-01-0228
This paper describes a practical approach to extract the global static stiffness of a body in white (BIW) from dynamic measurements in free-free conditions. Based on a limited set of measured frequency response functions (FRF), the torsional and bending stiffness values are calculated using an FRF based substructuring approach in combination with inverse force identification. A second approach consists of a modal approach whereby the static car body stiffness is deduced from a full free-free modal identification including residual stiffness estimation at the clamping and load positions. As an extra important result this approach allows for evaluating the modal contribution of the flexible car body modes to the global static stiffness values. The methods have been extensively investigated using finite element modeling data and verified on a series of body in white measurements.
Technical Paper

Optimization of Process Parameters for Automotive Paint Application

2011-10-06
2011-28-0072
The quality of the paint application in automotive industry depends on several process parameters. Thus, finding an optimal solution based on experimental configuration is tedious and time consuming. A first step to reduce the effort is to model the application within the framework of a simulation environment. In this study, we present an approach for the systematic variation of design parameters of the paint process to quantify their influence on the quality of the paint application. Using that information the design space is reduced by neglecting the parameters with low impact and later used to predict an optimal set of input parameters for an optimal paint application.
Technical Paper

Integrated Sensor System Framework for Enhanced Vehicle Safety

2011-10-06
2011-28-0037
With improvements in electronics and integrated safety systems, modern day cars are much safer than their predecessors. Unfortunately, cost is a very strong driving factor, when it comes to installation of a multitude of these safety systems on mid and low-segment cars. In this paper, we propose a novel integrated system of sensors that are strategically arranged around a car in order to provide safety at a reasonable cost. This generic framework of sensors would assist the driver under various driving scenarios like collision warning (forward and rear), overtake assist, parallel parking assist and adaptive cruise control. An invention disclosure has been filed with the Patent Cooperation Treaty for this work [8].
Technical Paper

System Modeling and Controls Design of a Two - Stage Spool Valve System of an Off - Road Vehicle

2013-01-09
2013-26-0111
A two-stage spool valve system is common in the hydraulic system of an off-road vehicle and used as hydraulics control element for controlling the hydraulic cylinder. Off-road vehicle industries mostly use a fixed-gain PID based controller for the flow control of the two-stage spool valve system. A hydraulic spool valve system exhibits highly nonlinear behavior, which makes it challenging to design a PID based controller to control its dynamics. This paper presents a method for the dynamic system model development of the two-stage spool valve system. This model will be useful to study the impact on the valve dynamics due to lubricating oil properties variation to avoid the potential system hazards and machine failure scenarios. An alternative control system design approach is also proposed based on the gain-scheduled control technique, wherein the non-linear dynamics of the valve system is linearized at different equilibrium points and PID gains are scheduled at these points.
Technical Paper

Vision Based Traffic Measuring System

2013-01-09
2013-26-0064
Traffic information is very useful in planning and designing of road transport, ensuring efficient administration of road traffic, transportation agencies as well as for the convenience of road users. Traffic can be measured in terms of speed, density and flow. In this paper, we propose two different methods to measure traffic in terms of density and flow. The set up for the proposed traffic monitoring system includes a camera placed at a height from ground looking downward on the road, such that its field of view is perpendicular to the direction of motion of the traffic. The images of the road are continuously captured by the camera and processed to determine the traffic. The first method uses Gaussian Mixture Modeling (GMM) to detect vehicles. Density is calculated in terms of area occupied by the vehicles on the road. Another method of measuring the traffic flow is proposed that is based on calculation of edge points on a horizontal line drawn in the image.
Technical Paper

Offline Tuning of Calibrations for Automotive Control Strategies

2013-01-09
2013-26-0083
In traditional way of calibration methods, it is required to have large numbers of dynometertests in order to find out the best calibration value. The manual effort increases with more number of inputs, dependency on the one to many outputs, calibrations, surface maps and larger range of values. Moreover, the calibration values obtained by such method may not be the best. This paper proposes the workflow for obtaining optimal tuning parameter which endeavors to improve the manual process coupled with an automated process. Auto calibration tool, with the use of optimization functions tunes the calibrations and calculate the best optimized value of the calibrations based upon the already existing test data. It is then possible to use these tuned values of calibrations for the final dynometer test. This method although not aimed at eliminating dynometer tests, it is saving human efforts along with resources like time and fuel consumption.
Technical Paper

Performance Characterization Platform for Vision Based Driver Safety Systems

2013-01-09
2013-26-0026
Many of the Advanced Driver Safety Systems (ADAS) provide vision based driver assistance. All vision based systems are not the same since they differ in algorithms. Thus, it is necessary to compare how robust these different algorithms are and provide the best possible solution to the end user. Such characterization is often difficult due to changing environmental conditions under which the algorithms have to perform. In these systems, performance becomes a critical parameter since any slight lapse could translate to serious danger on road. The reliability of any algorithm depends on its accuracy and consistency under varying environmental conditions. It is important to define the boundary conditions of the algorithm to evaluate these performance parameters. Often one finds out system performance under varying conditions only by expensive road testing.
Technical Paper

Night Time Vehicle Detection for Adaptive Beam and Collision Avoidance Systems

2013-01-09
2013-26-0024
This paper presents a novel and effective night time vehicle detection system for detecting vehicles in front of the camera-assisted host car. The proposed algorithm works for both oncoming vehicles (Head light detection) and preceding vehicles (Tail light detection). Image processing techniques are applied to the input frames captured by the forward looking camera fitted behind the windshield screen of the host car just near to the rear view mirror. The system uses a novel segmentation technique based on adaptive fuzzy logic, a novel statistical mean intensity measure and ‘confirmation - elimination’ based classification algorithm, and state of the art mutually independent feature based objects detection algorithm based on correlation matrix generation for the light objects identified in the scene.
Journal Article

Tackling the Complexity of Timing-Relevant Deployment Decisions in Multicore-Based Embedded Automotive Software Systems

2013-04-08
2013-01-1224
Multicore-based ECUs are increasingly used in embedded automotive software systems to allow more demanding automotive applications at moderate cost and energy consumption. Using a high number of parallel processors together with a high number of executed software components results in a practically unmanageable number of deployment alternatives to choose from. However correct deployment is one important step for reaching timing goals and acceptable latency, both also a must to reach safety goals of safety-relevant automotive applications. In this paper we focus at reducing the complexity of deployment decisions during the phases of allocation and scheduling. We tackle this complexity of deployment decisions by a mixed constructive and analytic approach.
Technical Paper

Realistic Driving Experience of New Vehicle Concepts on the BMW Ride Simulator

2012-06-13
2012-01-1548
Nowadays, a continually growing system complexity due to the development of an increasing number of vehicle concepts in a steadily decreasing development time forces the engineering departments in the automotive industry to a deepened system understanding. The virtual design and validation of individual components from subsystems up to full vehicles becomes an even more significant role. As an answer to the challenge of reducing complete hardware prototypes, the virtual competence in NVH, among other methods, has been improved significantly in the last years. At first, the virtual design and validation of objectified phenomena in analogy to hardware tests via standardized test rigs, e.g. four poster test rig, have been conceived and validated with the so called MBS (Multi Body Systems).
Technical Paper

Li-Ion Battery SOC Estimation Using Non-Linear Estimation Strategies Based on Equivalent Circuit Models

2014-04-01
2014-01-1849
Due to their high energy density, power density, and durability, lithium-ion (Li-ion) batteries are rapidly becoming the most popular energy storage method for electric vehicles. Difficulty arises in accurately estimating the amount of left capacity in the battery during operation time, commonly known as battery state of charge (SOC). This paper presents a comparative study between six different Equivalent Circuit Li-ion battery models and two different state of charge (SOC) estimation strategies. The Battery models cover the state-of-the-art of Equivalent Circuit models discussed in literature. The Li-ion battery SOC is estimated using non-linear estimation strategies i.e. Extended Kalman filter (EKF) and the Smooth Variable Structure Filter (SVSF). The models and the state of charge estimation strategies are compared against simulation data obtained from AVL CRUISE software.
Journal Article

Validation and Sensitivity Studies for SAE J2601, the Light Duty Vehicle Hydrogen Fueling Standard

2014-04-01
2014-01-1990
The worldwide automotive industry is currently preparing for a market introduction of hydrogen-fueled powertrains. These powertrains in fuel cell electric vehicles (FCEVs) offer many advantages: high efficiency, zero tailpipe emissions, reduced greenhouse gas footprint, and use of domestic and renewable energy sources. To realize these benefits, hydrogen vehicles must be competitive with conventional vehicles with regards to fueling time and vehicle range. A key to maximizing the vehicle's driving range is to ensure that the fueling process achieves a complete fill to the rated Compressed Hydrogen Storage System (CHSS) capacity. An optimal process will safely transfer the maximum amount of hydrogen to the vehicle in the shortest amount of time, while staying within the prescribed pressure, temperature, and density limits. The SAE J2601 light duty vehicle fueling standard has been developed to meet these performance objectives under all practical conditions.
Technical Paper

Implementing Mixed Criticality Software Integration on Multicore - A Cost Model and the Lessons Learned

2015-04-14
2015-01-0266
The German funded project ARAMiS included work on several demonstrators one of which was a multicore approach on large scale software integration (LSSI) for the automotive domain. Here BMW and Audi intentionally implemented two different integration platforms to gain both experience and real life data on a Hypervisor based concept on one side as well as using only native AUTOSAR-based methods on the other side for later comparison. The idea was to obtain figures on the added overhead both for multicore as well as safety, based on practical work and close-to-production implementations. During implementation and evaluation on one hand there were a lot of valuable lessons learned about multicore in conjunction with safety. On the other hand valuable information was gathered to make it finally possible to set up a cost model for estimation of potential overhead generated by different integration approaches for safety related software functions.
Technical Paper

Local Scene Depth Estimation Using Rotating Monocular Camera

2015-04-14
2015-01-0318
Dense depth estimation is a critical application in the field of robotics and machine vision where the depth perception is essential. Unlike traditional approaches which use expensive sensors such as LiDAR (Light Detection and Ranging) devices or stereo camera setup, the proposed approach for depth estimation uses a single camera mounted on a rotating platform. This proposed setup is an effective replacement to usage of multiple cameras, which provide around view information required for some operations in the domain of autonomous vehicles and robots. Dense depth estimation of local scene is performed using the proposed setup. This is a novel, however challenging task because baseline distance between camera positions inversely affect common regions between images. The proposed work involves dense two view reconstruction and depth map merging to obtain a reliable large dense depth map.
X