Refine Your Search

Search Results

Viewing 1 to 4 of 4
Technical Paper

The Development of BMW Catalyst Concepts for LEV / ULEV and EU III / IV Legislations 6 Cylinder Engine with Close Coupled Main Catalyst

1998-02-23
980418
To meet LEV and EU Stage III emission requirements, it is necessary for new catalytic converters to be designed which exceed light-off temperature as quickly as possible. The technical solutions are secondary air injection, active heating systems such as the electrically heated catalytic converter, and the close coupled catalytic converter. Engine control functions are extensively used to heat the converter and will to play a significant role in the future. The concept of relocating the converter to a position close to the engine in an existing vehicle involves new conflicts. Examples include the space requirements, the thermal resistance of the catalytic coating and high temperature loads in the engine compartment.
Technical Paper

Heated Catalytic Converter Competing Technologies to Meet LEV Emission Standards

1994-03-01
940470
Apart from the reduction of engine-out emissions from the powerplant, the development of an efficient and reliable catalytic converter heating system is an important task of automotive engineering in the future to meet standards that will require reduction of cold start emissions. Carrying out a comprehensive study in this field, BMW has tested and evaluated possible solutions to this challenge. In additon to the electrically heated catalytic converter (E-cat) and the afterburner chamber, an incorporated burner system would meet the requirement for fast catalyst light-off in the future, particularly in the case of larger engines.
Technical Paper

Electrically Heated Catalytic Converter (EHC) in the BMW ALPINA B12 5.7 Switch-Tronic

1996-02-01
960349
The production of the BMW ALPINA B12 5.7 with Switch-Tronic transmission provides the markets of Europe and Japan with an exclusive, luxury-orientated, high performance limited series limousine. This is the first vehicle worldwide to be fitted with the progressive exhaust gas aftertreatment technology known as the Electrically Heated Catalyst (EHC), in which the effectiveness of the power utilized is increased significantly by an alternating heating process for both catalytic converters. Only since this achievement has the implementation of the EHC been viable without extensive modification to the battery and alternator. With this exhaust gas aftertreatment concept, the emissions of this high performance vehicle will fall to less than half the maximum permissible for compliance with 1996 emission standards.
X