Refine Your Search

Search Results

Viewing 1 to 17 of 17
Technical Paper

Effect of Form Honing on Piston Assembly Friction

2020-05-29
2020-01-5055
Beside the main trend technologies such as downsizing, down speeding, external exhaust gas recirculation, and turbocharging in combination with Miller cycles, the optimization of the mechanical efficiency of gasoline engines is an important task in meeting future CO2 emission targets. Friction in the piston assembly is responsible for up to 45% of the total mechanical loss in a gasoline engine. Therefore, optimizing piston assembly friction is a valuable approach in improving the total efficiency of an internal combustion engine. The form honing process enables new specific shapes of the cylinder liner surface. These shapes, such as a conus or bottle neck, help enlarge the operating clearance between the piston assembly and the cylinder liner, which is one of the main factors influencing piston assembly friction.
Technical Paper

The Development of BMW Catalyst Concepts for LEV / ULEV and EU III / IV Legislations 6 Cylinder Engine with Close Coupled Main Catalyst

1998-02-23
980418
To meet LEV and EU Stage III emission requirements, it is necessary for new catalytic converters to be designed which exceed light-off temperature as quickly as possible. The technical solutions are secondary air injection, active heating systems such as the electrically heated catalytic converter, and the close coupled catalytic converter. Engine control functions are extensively used to heat the converter and will to play a significant role in the future. The concept of relocating the converter to a position close to the engine in an existing vehicle involves new conflicts. Examples include the space requirements, the thermal resistance of the catalytic coating and high temperature loads in the engine compartment.
Technical Paper

A New Method for the Investigation of Unburned Oil Emissions in the Raw Exhaust of SI Engines

1998-10-19
982438
The study of oil emission is of essential interest for the engine development of modern cars, as well as for the understanding of hydrocarbon emissions especially during cold start conditions. A laser mass spectrometer has been used to measure single aromatic hydrocarbons in unconditioned exhaust gas of a H2-fueled engine at stationary and transient motor operation. These compounds represent unburned oil constituents. The measurements were accompanied by FID and GC-FID measurements of hydrocarbons which represent the burned oil constituents. The total oil consumption has been determined by measuring the oil sampled by freezing and weighing. It has been concluded that only 10 % of the oil consumption via exhaust gas has burned in the cylinders. A correlation of the emission of single oil-based components at ppb level detected with the laser mass spectrometer to the total motor oil emission has been found.
Technical Paper

HC Measurements by Means of Flame Ionization: Background and Limits of Low Emission Measurement

2003-03-03
2003-01-0387
Flame Ionization Detectors (FID) can be used to detect organic hydrocarbons that occur in plastics, lacquers, adhesives, solvents and gasoline. These substances are ionized in the hydrogen flame of the FID. The ionization current that is produced depends on the amount of hydrocarbon in the sample. With the lowering of emissions limits, measuring instruments, including the FID, have to be able to detect very low values. For SULEV (Super-Ultra Low Emissions Vehicle) measurements the accuracy and also the general applicability of the CVS (Constant Volume Sampling) measuring technique are now questioned. Basic understanding is necessary to ask the right questions. One important issue is the science behind the measurement principle of the FID. And in this case especially the influence of contamination of the operating gases, cross sensitivity and data processing on the Limit of Detection (LOD).
Technical Paper

A New Phenomenological Approach to Simulate the Injection Rate of a Diesel Solenoid Valve Injector

2016-10-17
2016-01-2232
This paper presents a phenomenological and semi-empirical simulation model to predict the injection rate of a diesel solenoid valve injector based on a few injection quantity measurements and indications (EMI). The approximate injection rate will be used as the input data for a subsequent model, which simulates the rate of heat release (ROHR). The injection rate model encompasses algebraic relations and differential equations deviating from the equations of motion and conservation, which describes the characteristic processes in the injector by using modular submodules. The process and its assumptions are explained step by step for each submodule. In addition, the injection rate predictions are presented and compared with experimental results arising from the selected reference solenoid valve injector.
Technical Paper

A Virtual Residual Gas Sensor to Enable Modeling of the Air Charge

2016-04-05
2016-01-0626
Air charge calibration of turbocharged SI gasoline engines with both variable inlet valve lift and variable inlet and exhaust valve opening angle has to be very accurate and needs a high number of measurements. In particular, the modeling of the transition area from unthrottled, inlet valve controlled resp. throttled mode to turbocharged mode, suffers from small number of measurements (e.g. when applying Design of Experiments (DoE)). This is due to the strong impact of residual gas respectively scavenging dominating locally in this area. In this article, a virtual residual gas sensor in order to enable black-box-modeling of the air charge is presented. The sensor is a multilayer perceptron artificial neural network. Amongst others, the physically calculated air mass is used as training data for the artificial neural network.
Technical Paper

Testing Automotive Systems Modeled by Finite State Machines

1994-03-01
940136
The use of micro controllers in automotive systems renders the coordination of about 150 actors (70 electric motors, 15 magnetic valves and 50 relays). The resulting complexity of those systems as well as the requested zero defects demands time consuming testing. This work describes a method of performing test-scenarios, starting from a zero defect running specification, modeled by finite state machines. The test-scenarios are intended to determine whether a given system meets all specification requirements. First, a kind of structured modelling reactive automotive systems is deduced. Next, some important test selection methods, developed for the case the specification is given in the form of a finite state machine, are considered. Finally, a procedure and method for performing minimized complete test-scenarios for automotive systems are presented.
Technical Paper

Research Results on Processes and Catalyst Materials for Lean NOx Conversion

1996-10-01
962041
In a joint research project between industrial companies and a number of research institutes, nitrogen oxide conversion in oxygen containing exhaust gas has been investigated according to the following procedure Basic investigations of elementary steps of the chemical reaction Production and prescreening of different catalytic material on laboratory scale Application oriented screening of industrial catalyst material Catalyst testing on a lean bum gasoline engine, passenger car diesel engines (swirl chamber and DI) and on a DI truck engine Although a number of solid body structures show nitrogen oxide reduction by hydrocarbons, only noble metal containing catalysts and transition metal exchanged zeolites gave catalytic efficiencies of industrial relevance. A maximum of 25 % NOx reduction was found in the European driving cycle for passenger cars, about 40 % for truck engines in the respective European test.
Technical Paper

On-Line Analysis of Formaldehyde and Acetaldehyde in Non-Stationary Engine Operation Using Laser Mass Spectrometry

1996-05-01
961084
Time-resolved concentrations of formaldehyde and acetaldehyde in the exhaust gas have been investigated during transient motor operation, such as sudden change of speed and load, misfiring and switching off the fuel mixture control. To this purpose, a new laser mass spectrometer has been applied which is capable of measuring the concentrations of individual exhaust compounds with 1 ppm sensitivity at a sampling rate of 50 Hz corresponding to a sampling period of 20 ms. At sudden speed changes, high concentrations of aldehydes are observed, in particular during the phase of decreasing speed, i.e. after closing the throttle valve.
Technical Paper

On-Line Analysis of Individual Aromatic Hydrocarbons in Automotive Exhaust:Dealkylation of the Aromatic Hydrocarbons in the Catalytic Converter

1997-05-01
971606
The real-time concentrations of benzene, toluene, xylene, trimethyl-benzene and naphthalene in vehicle exhaust have been monitored during the FTP-cycle with a time-resolution of 20 ms and a sensitivity of 50 ppb. Using a laser mass spectrometer, the aromatic hydrocarbons in unconditioned exhaust gas at sampling positions behind the exhaust valve, before and behind the catalytic converter have been analyzed. The comparison of the emissions sampled before and behind the catalytic converter reveals the effect of dealkylation of the aromatic hydrocarbons in the catalytic converter. Whereas most of the aromatic hydrocarbons are burned in the hot catalytic converter, however, bursts of aromatic hydrocarbons are released at transient motor operation. In these moments, which can be attributed to phases of closed throttle valve and very low engine load at gear changes, a significant part of the C1-, C2- and C3- benzenes has been converted into benzene.
Technical Paper

Optical Investigations of an Oxygenated Alternative Fuel in a Single Cylinder DISI Light Vehicle Gasoline Engine

2021-04-06
2021-01-0557
In this study, a fully optically accessible single-cylinder research engine is the basis for the visualization and generation of extensive knowledge about the in-cylinder processes of mixture formation, ignition and combustion of oxygenated synthetic fuels. Previous measurements in an all-metal engine showed promising results by using a mixture of dimethyl carbonate and methyl formate as a fuel substitute in a DISI-engine. Lower THC and NOx emissions were observed along with a low PN-value, implying low-soot combustion. The flame luminosity transmitted via an optical piston was split in the optical path to simultaneously record the natural flame luminosity with an RGB high-speed camera. The second channel consisted of OH*-chemiluminescence recording, isolated by a bandpass filter via an intensified monochrome high-speed camera.
Technical Paper

ECU Integrated DSP Based Measurement System for Combustion Analysis

2000-03-06
2000-01-0547
For development of new engines a ‘general purpose ECU’ for spark ignition engines with up to 12 cylinders has been developed. As part of this ECU a DSP (Digital Signal Processor)-based measurement unit for high frequency combustion analysis has been integrated. In this paper, details about this signal processing platform are given. The DSP-unit has 24 analog input channels. 12 channels are used for cylinder pressure measurement; the other 12 channels are general purpose ones. For example, they can be used for ionic current analysis. Additional digital inputs allow measurement of crank speed and crank speed variations. This is an important topic for misfire detection as part of the OBD regulations.
Technical Paper

Real-Time Measurement of the Piston Ring Gap Positions and Their Effect on Exhaust Engine Oil Emission

2018-05-05
2018-01-5006
Measurement techniques for piston ring rotation, engine oil emission and blow by have been implemented on a single-cylinder petrol engine. A novel method of analysis allows continuous and fast real-time identification of the piston ring rotation of the two compression rings, while the mass-spectrometric analysis of the exhaust gas delivers the cylinder oil emission instantly and with a high temporal resolution. Only minor modifications to the piston rings were made for the insertion of the γ-emitters, the rings rotate freely around the circumference of the piston. The idea of this setup is that through online observation at the test bench, instant feedback of the measured variables is available, making it possible to purposefully select and compare measurement points. The high time resolution of the measurement methods enables the analysis of dynamic effects. In this article, the measurement setup and evaluation method is described.
Technical Paper

Experimental Investigation of a Control Strategy Based on Combustion Stability and Combustion Phasing for a Multi-Cylinder Engine with Fueled Pre-Chambers and Cylinder Pressure Transducers

2021-04-06
2021-01-0639
One way of increasing the efficiency of a gasoline engine is to operate it in lean-burn mode. However, a lean mixture in the combustion chamber reduces its ignitability, which leads to poor combustion stability and even misfires. This investigation presents a solution to this problem using an active pre-chamber for each cylinder, into which fuel can be injected separately and in which ignition takes place. This increases the ignition energy in the main combustion chamber, thus enabling stable combustion. Cylinder-specific feedback control of the fuel quantity injected into the pre-chambers was implemented on the basis of measured cylinder pressures so as to compensate for injector component deviations, achieve maximum efficiency, and prevent increased emissions. Since combustion delay and burn duration are dependent on the fuel mass injected into the pre-chamber, an additional feedback control for the center of combustion (MFB50) was integrated along with the fuel quantity controller.
Technical Paper

Investigation of an Innovative Combustion Process for High-Performance Engines and Its Impact on Emissions

2019-01-15
2019-01-0039
Over the past years, the question as to what may be the powertrain of the future has become ever more apparent. Aiming to improve upon a given technology, the internal combustion engine still offers a number of development paths in order to maintain its position in public and private mobility. In this study, an innovative combustion process is investigated with the goal to further approximate the ideal Otto cycle. Thus far, similar approaches such as Homogeneous Charge Compression Ignition (HCCI) shared the same objective yet were unable to be operated under high load conditions. Highly increased control efforts and excessive mechanical stress on the components are but a few examples of the drawbacks associated with HCCI. The approach employed in this work is the so-called Spark Assisted Compression Ignition (SACI) in combination with a pre-chamber spark plug, enabling short combustion durations even at high dilution levels.
Technical Paper

Experimental and Simulative Approaches for the Determination of Discharge Coefficients for Inlet and Exhaust Valves and Ports in Internal Combustion Engines

2017-11-27
2017-01-5022
In order to fulfill future exhaust emission regulations, the variety of subsystems of internal combustion engines is progressively investigated and optimized in detail. The present article mainly focuses on studies of the flow field and the resulting discharge coefficients of the intake and exhaust valves and ports. In particular, the valves and ports influence the required work for the gas exchange process, as well as the cylinder charge and consequently highly impact the engine’s performance. For the evaluation of discharge coefficients of a modern combustion engine, a stationary flow test bench has been set up at the Chair of Internal Combustion Engines (LVK) of the Technical University of Munich (TUM). The setup is connected to the test bench’s charge air system, allowing the adjustment and control of the system pressure, as well as the pressure difference across the particular gas exchange valve.
Journal Article

Analysis of the Piston Group Friction in a Single-Cylinder Gasoline Engine When Operated with Synthetic Fuel DMC/MeFo

2022-03-29
2022-01-0485
Synthetic fuels for internal combustion engines offer CO2-neutral mobility if produced in a closed carbon cycle using renewable energies. C1-based synthetic fuels can offer high knock resistance as well as soot free combustion due to their molecular structure containing oxygen and no direct C-C bonds. Such fuels as, for example, dimethyl carbonate (DMC) and methyl formate (MeFo) have great potential to replace gasoline in spark-ignition (SI) engines. In this study, a mixture of 65% DMC and 35% MeFo (C65F35) was used in a single-cylinder research engine to determine friction losses in the piston group using the floating-liner method. The results were benchmarked against gasoline (G100). Compared to gasoline, the density of C65F35 is almost 40% higher, but its mass-based lower heating value (LHV) is 2.8 times lower. Hence, more fuel must be injected to reach the same engine load as in a conventional gasoline engine, leading to an increased cooling effect.
X