Refine Your Search

Search Results

Viewing 1 to 6 of 6
Journal Article

Improved Comfort Analysis and Drivability Assessment by the Use of an Extended Power Train Model for Automatic Transmissions

2012-06-13
2012-01-1529
The new generation of automatic transmissions is characterized by a compact and highly efficient design. By the use of a higher overall gear ratio and lightweight components combined with optimal gear set concepts it is possible to improve significantly fuel consumption and driving dynamics. Precise and efficient real time models of the whole power train including models for complex subsystems like the automatic transmission are needed to combine real hardware with virtual models on XiL test rigs. Thereby it's possible to achieve a more efficient product development process optimized towards low development costs by less needed prototypes and shorter development times by pushing front loading in the process. In this paper a new real time model for automatic transmissions including approved models for the torque converter, the lock-up clutch and the torsional damper are introduced. At the current development stage the model can be used for comfort analysis and drivability assessment.
Journal Article

Predicted Roughness Perception for Simulated Vehicle Interior Noise

2012-06-13
2012-01-1561
In the past the exterior and interior noise level of vehicles has been largely reduced to follow stricter legislation and due to the demand of the customers. As a consequence, the noise quality and no longer the noise level inside the vehicle plays a crucial role. For an economic development of new powertrains it is important to assess noise quality already in early development stages by the use of simulation. Recent progress in NVH simulation methods of powertrain and vehicle in time and frequency domain provides the basis to pre-calculated sound pressure signals at arbitrary positions in the car interior. Advanced simulation tools for elastic multi-body simulation and novel strategies to measure acoustical transfer paths are combined to achieve this goal. In order to evaluate the obtained sound impression a roughness prediction model has been developed. The proposed roughness model is a continuation of the model published by Hoeldrich and Pflueger.
Technical Paper

Power Train Model Characteristics for Vibration Analyses – Conflicting Demands in Off Line and HiL Environments

2009-05-19
2009-01-2072
High quality predicting of power train vibration behaviour is desired in the early design stage for efficient vehicle development. Conflicting demands arise, since precise, fast simulation models are required. High precision of the models will allow for the elimination of resonance phenomena for future products, thereby ensuring their comfort for the customers. Fast simulations are becoming increasingly important for linking test environments with virtual prototypes under development. This paper deals with different aspects in these conflicting demands for power train vibration models. First, the paper investigates real-time capable mechanical models and decided in favor of the object-oriented modeling approach “for requirements of Hardware in the Loop” (HiL). This paper takes a closer look at the advantages of the object-oriented approach, the model setup, its validation and the test results.
Technical Paper

Robustness and Reliability Enhancement on Retractor Noise Testing, from Development Considerations to Round Robin

2018-06-13
2018-01-1533
Sensing and acting elements to guarantee the locking functions of seat belt retractors can emit noise when the retractor is subjected to externally applied vibrations. For these elements to function correctly, stiffness, inertia and friction needs to be in tune, leading to a complex motion resistance behavior, which makes it delicate to test for vibration induced noise. Requirements for a noise test are simplicity, robustness, repeatability, and independence of laboratory and test equipment. This paper reports on joint development activities for an alternative test procedure, involving three test laboratories with different equipment. In vehicle observation on parcel shelf mounted retractors, commercially available test equipment, and recent results from multi-axial component tests [1], set the frame for this work. Robustness and reliability of test results is being analyzed by means of sensitivity studies on several test parameters.
Technical Paper

Seat Belt Retractor Noise Test Correlation to 2DOF Shaker Test and Real Vehicle Comfort

2018-06-13
2018-01-1507
Seatbelt retractors as important part of modern safety systems are mounted in any automotive vehicle. Their internal locking mechanism is based on mechanically sensing elements. When the vehicle is run over rough road tracks, the retractor oscillates by spatial mode shapes and its interior components are subjected to vibrations in all 6 degrees of freedoms (DOF). Functional backlash of sensing elements cause impacts with neighbouring parts and leads to weak, but persistent rattle sound, being often rated acoustically annoying in the vehicle. Current acoustic retractor bench tests use exclusively uni-directional excitations. Therefore, a silent 2 DOF test bench is developed to investigate the effect of multi-dimensional excitation on retractor acoustics, combining two slip-tables, each driven independently by a shaker. Tests on this prototype test bench show, that cross coupling between the two perpendicular directions is less than 1%, allowing to control both directions independently.
Technical Paper

Prediction of Eigenfrequencies and Eigenmodes of Seatbelt Retractors in the Vehicle Environment, Supporting an Acoustically Optimal Retractor Integration by CAE

2018-06-13
2018-01-1543
From an acoustical point of view, the integration of seatbelt retractors in a vehicle is a real challenge that has to be met early in the vehicle development process. The buzz and rattle noise of seat belt retractors is a weak yet disturbing interior noise. Street irregularities excite the wheels and this excitation is transferred via the car body to the mounting location of the retractor. Ultimately, the inertia sensor of the locking mechanism is also excited. This excitation can be amplified by structural resonances and generate a characteristic impact noise. The objective of this paper is to describe a simulation method for an early development phase that predicts the noise-relevant low frequency local modes and consequently the contact of the retractor with the mounting panel of the car body via the finite element method.
X