Refine Your Search

Search Results

Viewing 1 to 8 of 8
Technical Paper

Modeling and Analysis of Microstructure Development in Resistance Spot Welds of High Strength Steels

In this study, an incrementally coupled finite element analysis procedure is used to analyze the electrical, thermal, and mechanical interaction during resistance spot welding processes. The results of the finite element analysis are validated by experimental measurements of the weld nugget sizes and dynamic resistance. The temperature results from the thermo-electric analysis are used as the input for the prediction of the microstructure evolution in the resistance spot welds of high strength steels. Consequently such welding parameters as welding current, electrode force, electrode designs, cooling water temperature and flow rate, and electrode holding time can be linked with the weld nugget size, microstructure and mechanical properties in spot welds, and eventually the residual stresses and performance of spot welded structures.
Technical Paper

Characterization of Nugget Development under Electrode Wear Conditions in Resistance Spot Welding

The effects of electrode wear on nugget development during resistance spot welding are major concerns in auto-body assembly and manufacturing. By considering detailed electrode-sheet interactions using advanced finite element modeling procedure, this paper presents a framework for detecting the electrode wear conditions and associated nugget development characteristics. Two important in-process parameters are studied in detail. They are the electrode movement and the dynamic resistance. It is found that the second-order derivative of the electrode movement and the first-order derivative of the dynamic resistance can be correlated in a fundamental form to identify the detailed nugget development process under various electrode wear conditions.
Technical Paper

Fatigue Evaluation Procedure Development for Self-Piercing Riveted Joints Using the Battelle Structural Stress Method

Lightweight, optimized vehicle designs are paramount in helping the automotive industry meet reduced emissions standards. Self-piercing rivets are a promising new technology that may play a role in optimizing vehicle designs, due to their superior fatigue resistance compared with spot welds and ability to join dissimilar materials. This paper presents a procedure for applying the mesh-insensitive Battelle Structural Stress Method to self-piercing riveted joints for fatigue life prediction. Additionally, this paper also examines the development of an interim fatigue design master S-N curve for self-piercing rivets. The interim fatigue design master S-N curve accounts for factors such as various combinations of similar and dissimilar metal sheets, various sheet thicknesses, stacking sequence, and load ratios. A large amount of published data was collapsed into a single interim S-N curve with reasonable data scattering.
Technical Paper

Application of Weld Fatigue Evaluation Procedure for Considering Multi-Axial Stress States Using the Battelle Structural Stress Method

Even under uniaxial loading, seemingly simple welded joint types can develop multi-axial stress states, which must be considered when evaluating both the fatigue strength and failure location. Based on the investigation of fatigue behavior for the multi-axial stress state, a procedure for fatigue behavior of welded joints with multi-axial stress states was proposed using an effective equivalent structural stress range parameter combined normal and in-plane shear equivalent structural stress ranges and the master S-N curve approach. In automotive structures, fatigue failure is often observed at weld end, which often show a complex stress state. Due to simplified weld end representation having a sharp right-angled weld corner, the fatigue failure prediction at the weld end tends to be overly conservative due to the excessive stress concentration at the right-angled weld termination.
Technical Paper

Effects of Welding Procedures on Formability: A Finite Element Study

Tailor-welded blanks (TWB) have been increasingly used in the automotive industry as an effective way to reduce weight and costs. Although some of the joining processes for TWB are relatively well known, little independent information exists regarding welding procedure effects on weld/HAZ properties, particularly their effects on form-ability and structural performance under various conditions. In this paper, advanced computational modeling techniques were used to investigate the effects of welding procedures on weld property evolution and its impact on the formability issues. Two case studies were presented. One is on TIG welding of 6000 series aluminum tailored blanks, where thermomechanical effects on weldability was analyzed. Its implication on weld performance during forming will be discussed. The other case is on laser-beam welding of high strength steel to mild steel with a non-linear weld. The detailed thermal history and residual stress development will be presented.
Journal Article

Development of Friction Stir Weld Fatigue Evaluation Procedure Using Battelle Structural Stress Method

Weld fatigue evaluation using the mesh-insensitive Battelle structural stress method has been applied to fusion welds, resistance spot welds and non-welded components. The effectiveness of the Battelle structural stress procedure has been demonstrated in a series of earlier publications for welded structures with different joint types, plate thicknesses, and loading modes. In this paper, a weld fatigue evaluation procedure using the Battelle structural stress method is proposed for friction stir welds currently being used in the automotive and aerospace industries. The applicability of the Battelle structural stress procedure is demonstrated by comparing fatigue life predictions for friction stir welded specimens to well-documented test data from the literature. Different specimen types, plate thicknesses and loading ratios were analyzed for several aluminum alloys.
Journal Article

The Development of a Simplified Spot Weld Model for Battelle Structural Stress Calculation

The nodal force based Battelle structural stress method has shown its mesh insensitivity in the stress analysis of spot welds as well as fusion welds. In the conventional structural stress simulation procedure, the structural stress is calculated at the nodes along the nugget periphery. However, implementing a nugget into each spot weld is cumbersome and time consuming not only in preparing mesh for FE analysis but also in preparing a series of structural stress calculation after finishing the FE analysis. Therefore, the efficiency of the current Battelle structural stress practice for spot welds can be improved significantly for structures with a large number of spot welds. The simplified modeling procedure presented here delivers reliable structural stresses at spot welds and these stresses can then be utilized for fatigue life prediction using a master S-N Curve approach that is applicable to wide range of spot welding techniques.
Technical Paper

Incorporating Weld Residual Stress Effects into Fatigue Life Predictions using the Battelle Structural Stress Method

Welding induced residual stresses are an important factor to consider when evaluating fatigue design of welded automotive parts. Fortunately, design engineers have various residual stress mitigation technologies at their disposal for improving the fatigue performance of these parts. For this purpose, it is essential to understand the relationship between the residual stresses and fatigue performance quantitatively as well as qualitatively. It has been widely accepted that tensile residual stresses in welded structures are as high as the material yield strength level. Therefore, the fatigue strength of welded joints is governed predominantly by the applied stress range, regardless of the load ratio. However, in stress relieved components the tensile residual stress level is not as high, and the weld fatigue behavior is more influenced by the load ratio.