Refine Your Search

Search Results

Viewing 1 to 8 of 8
Technical Paper

Progress in Rotorcraft Icing Computational Tool Development

2015-06-15
2015-01-2088
The formation of ice over lifting surfaces can affect aerodynamic performance. In the case of helicopters, this loss in lift and the increase in sectional drag forces will have a dramatic effect on vehicle performance. The ability to predict ice accumulation and the resulting degradation in rotor performance is essential to determine the limitations of rotorcraft in icing encounters. The consequences of underestimating performance degradation can be serious and so it is important to produce accurate predictions, particularly for severe icing conditions. The simulation of rotorcraft ice accretion is a challenging multidisciplinary problem that until recently has lagged in development over its counterparts in the fixed wing community. But now, several approaches for the robust coupling of a computational fluid dynamics code, a rotorcraft structural dynamics code and an ice accretion code have been demonstrated.
Technical Paper

Design and Evaluation of Novel Composite Aircraft Repairs

2003-09-08
2003-01-3016
One of the most common damages occurred found on commercial airframes are dents and gouges. The usual repair for these damages includes installation of metallic doublers with rivets or with hi-loks. Sometimes these doublers are of complex design, because of multiple angles of the original damaged skin. Many times the damages are in hard to reach areas. In these cases the traditional metallic doubler repairs are not only time consuming and but also expensive. As the numerous holes are be drilled through the original structure, its fatigue life is adversely affected. For airline operators, time is valuable and they cannot afford to lose revenue by spending longer time for repairs. The use of bonded composite doublers offers the airframe manufacturers and aircraft repair facilities an alternative repair process that alleviates the abovementioned concerns.
Technical Paper

The Impact of Emerging Technologies on Tactical V/STOL Airplane Design and Utility

1977-02-01
770985
A new look at tactical combat V/STOL design and utility as affected by emerging technology and mission concepts is given in this paper. History has shown that a certain level of useful load fraction must be attained before an airplane system can be considered operationally successful. Technology trends reviewed in this paper suggest that the time is here or at least near for V/STOL tactical aircraft to achieve a truly viable useful load fraction. Propulsion, structure, and controls technologies will contribute to the success of the tactical V/STOL system. In addition, aerodynamic technology as related to interference effects in hover and transition, and as required for efficient supersonic cruise and combat, significantly impacts the design solution. A unique approach to system design risk assessment is described with results giving technology leverage as a function of design options.
Journal Article

Soaring with Eagles: Birdstrike Analysis in the Design and Operation of New Airplanes

2013-09-17
2013-01-2234
We live in an era of increasing twin-engine commercial airplane operations, with large and very quiet high bypass ratio engines. At the same time, due to several decades of increased attention to the environment, we have large and increasing hazardous species bird populations. These trends, when combined, are not a prescription for continued assurance of a remarkable and enviable safety record for commercial aviation. Therefore, greater diligence must be placed on the evaluation of the current and future aviation wildlife hazard. We have some new weapons in this fight for greater capability to live with this situation. The basic problem is that different databases are populated independently from one another and often contain conflicting, contradictory, and erroneous data. Databases that were used individually, but not necessarily combined, are being utilized in a conjoined methodology to give us a better picture of the actual risk involved.
Journal Article

Parametric Life Cycle Assessment for the Design of Aircraft

2013-09-17
2013-01-2277
Current methods of life cycle assessment (LCA) include input-output (IO) models and process-based LCA. These methods either require excessive effort and time to reach a conclusion (process LCA) or do not adequately model how a change in a product's design will affect the environmental footprint (IO LCA). A variation of process-based LCA developed specifically for aircraft is presented in this study. A tool implementing this LCA, “qUWick,” is rapid and easily applicable to multi-disciplinary design optimization of aircraft. Models developed for the material production, manufacturing, usage, and end-of-life of an aircraft are examined. Outputs of qUWick are discussed for future air vehicles. When compared to process LCAs with similar boundaries, qUWick gives similar results, however qUWick models several stages of an aircraft's life cycle more accurately than other aircraft process-based LCAs.
Journal Article

Optimization Methods for Portable Automation Equipment Utilizing Motion Tracking Technology

2011-10-18
2011-01-2668
The use of portable automated equipment has increased in recent years with the introduction of flex track, crawling robots, and other innovative machine configurations. Portable automation technologies such as these lower infrastructure costs by minimizing factory floor space requirements and foundation expenses. Portable automation permits a higher density of automated equipment to be used adjacent to aircraft during assembly. This equipment also allows concurrent work in close proximity to automated processes, promotes flexibility for changes in rate, build plan, and floor space requirements throughout the life of an airplane program. This flexibility presents challenges that were not encountered with traditional fixed machine drilling centers. The work zone surrounding portable machines is relatively small, requiring additional setup time to relocate and position machines near the airframe.
Book

Managing Aerospace Projects

2017-09-12
Over the next twenty years, the role and contributions of successfully managed projects will continue to grow in importance to aerospace organizations, especially considering the demands of emerging markets. The accompanying challenges will be how to effectively reduce product and process cost where known (incremental) and unknown (transformational) technological innovation is required. Managing Aerospace Projects brings together ten seminal SAE technical papers that support the vision of a more holistic and integrated approach to highly complex projects. Using the concept of project management levers, Dr.
Technical Paper

Helicopter Transmission and Drivelines - A Brief Overview of

2019-04-02
2019-01-1294
Transmission and drivelines as they apply to helicopters are discussed including history, common configurations, and typical, industry design philosophies. A brief history of transmission use in helicopter applications is provided, including an emphasis on the flight critical nature of transmissions and drivelines in helicopter applications and how the helicopter transmission has evolved over their 100 years of service. Common helicopter drivelines are discussed for a variety of helicopter configurations (single main rotor, tandem rotor, and tilt rotor, among others), touching on typical shaft speed and horsepower ranges. Finally, typical helicopter transmission design practices are discussed for gear, bearing, and lubrication systems.
X