Refine Your Search

Search Results

Viewing 1 to 9 of 9
Technical Paper

Expanding the Low Load Limit of HCCI Combustion Process Using EIVO Strategy in a 4VVAS Gasoline Engine

Homogeneous charge compression ignition (HCCI) technology is promising to reduce engine exhaust emissions and fuel consumption in gasoline engine. However, it is still confronted with the problem of its limited operation range. High load is limited by the tradeoff between the quantity of working charge and dilution charge. Low load is limited by the high residual gas fraction and low temperature in the cylinder. One of the highlights of HCCI combustion research at present is to expand the low load limit of HCCI combustion by developing HCCI idle operation. The main obstacle in developing HCCI idle combustion is too high residual gas fraction and low temperature to misfire in cylinder. This paper relates to a method for achieving the appropriate environment for auto-ignition at idle and the optimal tradeoff between the combustion stability and fuel consumption by employing EIVO valve strategy with an equivalent air-fuel ratio.
Technical Paper

Synergy between Boost and Valve Timings in a Highly Boosted Direct Injection Gasoline Engine Operating with Miller Cycle

Gasoline engine downsizing has become a popular and effective approach to reduce CO2 emissions from passenger cars. This is typically achieved in the form of a boosted direct injection gasoline engine, which are typically equipped with variable valve timing (VVT) devices on the intake and/or exhaust valves. This paper describes the synergies between valve timings and boost based on experimental investigations in a single cylinder gasoline direct injection spark ignited (DISI) engine with variable cam phasing on both the intake and exhaust cams. Two cam profiles have been tested to realize Miller cycle and compared with the standard camshaft. One cam features a long opening duration and standard valve lift for Late Intake Valve Closing (LIVC) and the other cam has a short opening duration and low valve lift for Early Intake Valve Closing (EIVC).
Technical Paper

Engine Downsizing through Two-Stroke Operation in a Four-Valve GDI Engine

With the introduction of CO2 emissions legislation in Europe and many countries, there has been extensive research on developing high efficiency gasoline engines by means of the downsizing technology. Under this approach the engine operation is shifted towards higher load regions where pumping and friction losses have a reduced effect, so improved efficiency is achieved with smaller displacement engines. However, to ensure the same full load performance of larger engines the charge density needs to be increased, which raises concerns about abnormal combustion and excessive in-cylinder pressure. In order to overcome these drawbacks a four-valve direct injection gasoline engine was modified to operate in the two-stroke cycle. Hence, the same torque achieved in an equivalent four-stroke engine could be obtained with one half of the mean effective pressure.
Technical Paper

Impact of Port Fuel Injection and In-Cylinder Fuel Injection Strategies on Gasoline Engine Emissions and Fuel Economy

As the emission regulations for internal combustion engines are becoming increasingly stringent, different solutions have been researched and developed, such as dual injection systems (combined port and direct fuel injection), split injection strategies (single and multiple direct fuel injection) and different intake air devices to generate an intense in-cylinder air motion. The aim of these systems is to improve the in-cylinder mixture preparation (in terms of homogeneity and temperature) and therefore enhance the combustion, which ultimately increases thermal efficiency and fuel economy while lowering the emissions. This paper describes the effects of dual injection systems on combustion, efficiency and emissions of a downsized single cylinder gasoline direct injection spark ignited (DISI) engine. A set of experiments has been conducted with combined port fuel and late direct fuel injection strategy in order to improve the combustion process.
Technical Paper

Effect of an ORC Waste Heat Recovery System on Diesel Engine Fuel Economy for Off-Highway Vehicles

Modern heavy duty diesel engines can well extend the goal of 50% brake thermal efficiency by utilizing waste heat recovery (WHR) technologies. The effect of an ORC WHR system on engine brake specific fuel consumption (bsfc) is a compromise between the fuel penalty due to the higher exhaust backpressure and the additional power from the WHR system that is not attributed to fuel consumption. This work focuses on the fuel efficiency benefits of installing an ORC WHR system on a heavy duty diesel engine. A six cylinder, 7.25ℓ heavy duty diesel engine is employed to experimentally explore the effect of backpressure on fuel consumption. A zero-dimensional, detailed physical ORC model is utilized to predict ORC performance under design and off-design conditions.
Technical Paper

Exploring the NOx Reduction Potential of Miller Cycle and EGR on a HD Diesel Engine Operating at Full Load

The reduction in nitrogen oxides (NOx) emissions from heavy-duty diesel engines requires the development of more advanced combustion and control technologies to minimize the total cost of ownership (TCO), which includes both the diesel fuel consumption and the aqueous urea solution used in the selective catalytic reduction (SCR) aftertreatment system. This drives an increased need for highly efficient and clean internal combustion engines. One promising combustion strategy that can curb NOx emissions with a low fuel consumption penalty is to simultaneously reduce the in-cylinder gas temperature and pressure. This can be achieved with Miller cycle and by lowering the in-cylinder oxygen concentration via exhaust gas recirculation (EGR). The combination of Miller cycle and EGR can enable a low TCO by minimizing both the diesel fuel and urea consumptions.
Technical Paper

Conceptual Design of a Variable Geometry, Axial Flow Turbocharger Turbine

The modern automotive industry is under strict regulations to reduce emissions to comply with the Kyoto Protocol, a universally acknowledged treaty aiming at reducing exhaust gas emissions. In order to achieve the required future emission reduction targets, further developments on gasoline engines are required. One of the main methods to achieve this goal is the application of engine downsizing. Turbocharging is a cost-effective method of downsizing an engine whilst reducing exhaust gas emissions, reducing fuel consumption and maintaining prior performance outputs. For these reasons, the turbocharging is becoming the most widely adopted technology in the automotive markets. In 2012, 32% of passenger and commercial vehicles sold had a turbocharger installed, and is predicted to be 40% of 2017 [1]. Even if the engine turbocharging is a widespread technology, there are still drawbacks present in current turbocharging systems.
Technical Paper

Investigation of EGR and Miller Cycle for NOx Emissions and Exhaust Temperature Control of a Heavy-Duty Diesel Engine

In order to meet increasingly stringent emissions standards and lower the fuel consumption of heavy-duty (HD) vehicles, significant efforts have been made to develop high efficiency and clean diesel engines and aftertreatment systems. However, a trade-off between the actual engine efficiency and nitrogen oxides (NOx) emission remains to minimize the operational costs. In addition, the conversion efficiency of the diesel aftertreatment system decreases rapidly with lower exhaust gas temperatures (EGT), which occurs at low load operations. Thus, it is necessary to investigate the optimum combustion and engine control strategies that can lower the vehicle’s running costs by maintaining low engine-out NOx emissions while increasing the conversion efficiency of the NOx aftertreament system through higher EGTs.
Journal Article

Effects of Injection Timing on CAI Operation in a 2/4-Stroke Switchable GDI Engine

A single cylinder direct injection gasoline engine has been developed and commissioned on a transient engine test bed in order to study different engine cycles and combustion modes with identical hardware and operating conditions. The engine can be operated in either 4-stroke cycle or 2-stroke cycle by means of an electro-hydraulic camless system. In addition, both spark ignition and controlled autoignition (CAI) combustion can be achieved. In this paper, effects of the injection timing on different CAI combustion modes are investigated, including the residual gas trapping and exhaust gas rebreathing CAI operations in 4-stroke mode, and also 2-stroke CAI operation, with a stoichiometric air fuel ratio and homogeneous charge used throughout. The performance and emission data are presented and analysed as a function of the injection timing. Results show that the charge cooling effect on the intake flow rate is dependent upon the in-cylinder temperature at the time of injection.