Refine Your Search

Topic

Author

Affiliation

Search Results

Video

GreenZone Driving for Plug In Hybrid Electric Vehicles

2012-05-29
Impact of driving patterns on fuel economy is significant in hybrid electric vehicles (HEVs). Driving patterns affect propulsion and braking power requirement of vehicles, and they play an essential role in HEV design and control optimization. Driving pattern conscious adaptive strategy can lead to further fuel economy improvement under real-world driving. This paper proposes a real-time driving pattern recognition algorithm for supervisory control under real-world conditions. The proposed algorithm uses reference real-world driving patterns parameterized from a set of representative driving cycles. The reference cycle set consists of five synthetic representative cycles following the real-world driving distance distribution in the US Midwestern region. Then, statistical approaches are used to develop pattern recognition algorithm. Driving patterns are characterized with four parameters evaluated from the driving cycle velocity profiles.
Journal Article

A New Responsive Model for Educational Programs for Industry: The University of Detroit Mercy Advanced Electric Vehicle Graduate Certificate Program

2010-10-19
2010-01-2303
Today's automotive and electronics technologies are evolving so rapidly that educators and industry are both challenged to re-educate the technological workforce in the new area before they are replaced with yet another generation. In early November 2009 Ford's Product Development senior management formally approved a proposal by the University of Detroit Mercy to transform 125 of Ford's “IC Engine Automotive Engineers” into “Advanced Electric Vehicle Automotive Engineers.” Two months later, the first course of the Advanced Electric Vehicle Program began in Dearborn. UDM's response to Ford's needs (and those of other OEM's and suppliers) was not only at the rate of “academic light speed,” but it involved direct collaboration of Ford's electric vehicle leaders and subject matter experts and the UDM AEV Program faculty.
Journal Article

The Effects of Charge Motion and Laminar Flame Speed on Late Robust Combustion in a Spark-Ignition Engine

2010-04-12
2010-01-0350
The effects of charge motion and laminar flame speeds on combustion and exhaust temperature have been studied by using an air jet in the intake flow to produce an adjustable swirl or tumble motion, and by replacing the nitrogen in the intake air by argon or CO₂, thereby increasing or decreasing the laminar flame speed. The objective is to examine the "Late Robust Combustion" concept: whether there are opportunities for producing a high exhaust temperature using retarded combustion to facilitate catalyst warm-up, while at the same time, keeping an acceptable cycle-to-cycle torque variation as measured by the coefficient of variation (COV) of the net indicated mean effective pressure (NIMEP). The operating condition of interest is at the fast idle period of a cold start with engine speed at 1400 RPM and NIMEP at 2.6 bar. A fast burn could be produced by appropriate charge motion. The combustion phasing is primarily a function of the spark timing.
Technical Paper

Calibration of Electrochemical Models for Li-ion Battery Cells Using Three-Electrode Testing

2020-04-14
2020-01-1184
Electrochemical models of lithium ion batteries are today a standard tool in the automotive industry for activities related to the computer-aided engineering design, analysis, and optimization of energy storage systems for electrified vehicles. One of the challenges in the development or use of such models is the need of detailed information on the cell and electrode geometry or properties of the electrode and electrolyte materials, which are typically unavailable or difficult to retrieve by end-users. This forces engineers to resort to “hand-tuning” of many physical and geometrical parameters, using standard cell-level characterization tests. This paper proposes a method to provide information and data on individual electrode performance that can be used to simplify the calibration process for electrochemical models.
Journal Article

HEV Battery Pack Thermal Management Design and Packaging Solutions

2017-03-28
2017-01-0622
Hybrid Electric Vehicles (HEV) utilize a High Voltage (HV) battery pack to improve fuel economy by maximizing the capture of vehicle kinetic energy for reuse. Consequently, these HV battery packs experience frequent and rapid charge-discharge cycles. The heat generated during these cycles must be managed effectively to maintain battery cell performance and cell life. The HV battery pack cooling system must keep the HV battery pack temperature below a design target value and maintain a uniform temperature across all of the cells in the HV battery pack. Herein, the authors discuss some of the design points of the air cooled HV battery packs in Ford Motor Company’s current model C-Max and Fusion HEVs. In these vehicles, the flow of battery cooling air was required to not only provide effective cooling of the battery cells, but to simultaneously cool a direct current high voltage to low voltage (DC-DC) converter module.
Journal Article

Advancements and Opportunities for On-Board 700 Bar Compressed Hydrogen Tanks in the Progression Towards the Commercialization of Fuel Cell Vehicles

2017-03-28
2017-01-1183
Fuel cell vehicles are entering the automotive market with significant potential benefits to reduce harmful greenhouse emissions, facilitate energy security, and increase vehicle efficiency while providing customer expected driving range and fill times when compared to conventional vehicles. One of the challenges for successful commercialization of fuel cell vehicles is transitioning the on-board fuel system from liquid gasoline to compressed hydrogen gas. Storing high pressurized hydrogen requires a specialized structural pressure vessel, significantly different in function, size, and construction from a gasoline container. In comparison to a gasoline tank at near ambient pressures, OEMs have aligned to a nominal working pressure of 700 bar for hydrogen tanks in order to achieve the customer expected driving range of 300 miles.
Technical Paper

DC-Link Capacitor Sizing in HEV/EV e-Drive Power Electronic System from Stability Viewpoint

2020-04-14
2020-01-0468
Selection of the DC-link capacitance value in an HEV/EV e-Drive power electronic system depends on numerous factors including required voltage/current ratings of the capacitor, power dissipation, thermal limitation, energy storage capacity and impact on system stability. A challenge arises from the capacitance value selection based on DC-link stability due to the influence of multiple hardware parameters, control parameters, operating conditions and cross-coupling effects among them. This paper discusses an impedance-based methodology to determine the minimum required DC-link capacitance value that can enable stable operation of the system in this multi-dimensional variable space. A broad landscape of the minimum capacitance values is also presented to provide insights on the sensitivity of system stability to operating conditions.
Journal Article

Developing Safety Standards for FCVs and Hydrogen Vehicles

2009-04-20
2009-01-0011
The SAE Fuel Cell Vehicle (FCV) Safety Working Group has been addressing FCV safety for over 9 years. The initial document, SAE J2578, was published in 2002. SAE J2578 has been valuable as a Recommended Practice for FCV development with regard to the identification of hazards and the definition of countermeasures to mitigate these hazards such that FCVs can be operated in the same manner as conventional gasoline internal combustion engine (ICE)-powered vehicles. SAE J2578 is currently being revised so that it will continue to be relevant as FCV development moves forward. For example, test methods were refined to verify the acceptability of hydrogen discharges when parking in residential garages and commercial structures and after crash tests prescribed by government regulation, and electrical requirements were updated to reflect the complexities of modern electrical circuits which interconnect both AC and DC circuits to improve efficiency and reduce cost.
Journal Article

An Assessment of the Rare Earth Element Content of Conventional and Electric Vehicles

2012-04-16
2012-01-1061
Rare earths are a group of elements whose availability has been of concern due to monopolistic supply conditions and environmentally unsustainable mining practices. To evaluate the risks of rare earths availability to automakers, a first step is to determine raw material content and value in vehicles. This task is challenging because rare earth elements are used in small quantities, in a large number of components, and by suppliers far upstream in the supply chain. For this work, data on rare earth content reported by vehicle parts suppliers was assessed to estimate the rare earth usage of a typical conventional gasoline engine midsize sedan and a full hybrid sedan. Parts were selected from a large set of reported parts to build a hypothetical typical mid-size sedan. Estimates of rare earth content for vehicles with alternative powertrain and battery technologies were made based on the available parts' data.
Technical Paper

Ignition Switch Material Definition to Avoid Hard to Start Issue

2020-01-13
2019-36-0138
Nowadays, develop and launch a new product in the market is hard to every company. When we talk about a launch new vehicle to the customers, this task could be considered more difficult than other products whether imagine how fast the technology should be integrated to vehicle. There are main pillars to be considered in this scenario: low cost, design, innovation, competitiveness and safety. Whereas Brazilian economic scenario, all OEM has to be aware to opportunity to make the product profitable and keep acceptable quality. This combination between low cost and quality could be broken or not distributed equally between the pillars. Based on that, in some cases could have a quality broken that will affect directly the customer. This paper will focus on project to define of the new ignition switch, when the main challenge to achieve the cost reduction target was defined to change a material to electrical terminals.
Journal Article

On-Board Physical Based 70 MPa Hydrogen Storage Systems

2011-04-12
2011-01-1343
Fossil energy diversity and security along with environmental emission policies demand new energy carriers and associated technologies in the future. One of the major challenges of the automotive industry and research institutes worldwide currently is to develop and realize alternative fuel concepts for passenger cars. In line with Ford's global hydrogen vehicle program, different onboard hydrogen storage technologies are under investigation. In general, hydrogen storage methods can be categorized as either physical storage of hydrogen (i.e. compressed, liquid, or cryo-compressed) or material based hydrogen storage. Currently, automotive OEMs have only introduced hydrogen fleet vehicles that utilize physical-based hydrogen storage systems but they have recognized that hydrogen storage systems need to advance further to achieve the range associated with today's gasoline vehicle.
Technical Paper

Modeling and Simulation of Small Hybrid

2006-11-21
2006-01-2758
Auto-manufacturers are under increasing pressure to develop powertrain systems for automotive vehicles, which are more efficient regarding fuel consumption, less polluting and still keep high performance levels. Hybrid electrical vehicles (HEV) are considered the most promising technology in sight, considering a time horizon of more ore less twenty years. HEVs combine benefits of electrical vehicles, such zero emission, low noise and high torques at low velocities and advantages of conventional vehicles, such as large autonomy, great reliability and high levels of performance. This paper is focused on the major elements of an HEV powertrain: electrical motors, internal combustion engine (ICE) and batteries, which are described. The paper also presents a comparison of two possible HEV configurations: series and parallel. The mathematical model of a small hybrid vehicle is developed using software ADVISOR.
Technical Paper

Making the Case for a Next Generation Automotive Electrical System

1998-10-19
98C006
Introduction of an array of new electrical and electronic features into future vehicles is generating vehicle electrical power requirements that exceed the capabilities of today's 14 volt electrical systems. In the near term (5 to 10 years), the existing 14V system will be marginally capable of supporting the expected additional loads with escalating costs for the associated charging system. However, significant increases in vehicle functional content are expected as future requirements to meet longer-term (beyond 10 years) needs in the areas of emission control, fuel economy, safety, and passenger comfort. A higher voltage electrical system will be required to meet these future requirements. This paper explores the functional needs that will mandate a higher voltage system and the benefits derivable from its implementation.
Technical Paper

Correlation between vehicle interior noise and alternator radiated noise measured on bench test

2008-03-30
2008-36-0537
In automotive industry, the interior quietness is a task that manufacturers are constantly improving for passenger comfort. In order to improve the interior quietness there are considered the contribution of structure borne and airborne noise. An alternator used in vehicles for generation of electricity can be considered as a contributor of airborne noise. Due to the characteristics of an alternator, it could radiate mechanical, aerodynamic and electromagnetic noise. The last two characteristics are normally perceived by customer during powertrain and idle evaluation. In this paper is presented correlation between interior noise measured on road test and alternator radiated noise measured on bench test.
Technical Paper

Data Communication Over Power Battery Lines

2008-10-07
2008-36-0032
Network communications are widely being deployed in vehicle electrical architecture due to its low cost for embedded electronic and advance it provides. Nowadays, different types of protocols may be used to allow the communication among the modules (e.g.: CAN, LIN, FLEX RAIL, etc). Modules may receive or send data throughout a physical layer. And they are powered up by using different types of cables, grounds and shields which create a high complexity in terms of wiring harnesses installation, weight and cost. Data and power transmission throughout a unique line is a real and promising available technology.
Technical Paper

Crash Safety of Lithium-Ion Batteries Towards Development of a Computational Model

2010-04-12
2010-01-1078
Battery packs for Hybrids, Plug-in Hybrids, and Electric Vehicles are assembled from a system of modules (sheets) with a tight sheet metal casing around them. Each module consists of an array of individual cells which vary in the composition of electrodes and separator from one manufacturer to another. In this paper a general procedure is outlined on the development of a constitutive and computational model of a cylindrical cell. Particular emphasis is placed on correct prediction of initiation and propagation of a tearing fracture of the steel can. The computational model correctly predicts rupture of the steel can which could release aggressive chemicals, fumes, or spread the ignited fire to the neighboring cells. The initiation site of skin fracture depends on many factors such as the ductility of the casing material, constitutive behavior of the system of electrodes, and type of loading.
Technical Paper

A Comparison of Different Methods for Battery and Supercapacitor Modeling

2003-06-23
2003-01-2290
In future vehicles (e.g. fuel cell vehicles, hybrid electric vehicles), the electrical system will have an important impact on the mechanical systems in the car (e.g. powertrain, steering). Furthermore, this coupling will become increasingly important over time. In order to develop effective designs and appropriate control systems for these systems, it is important that the plant models capture the detailed physical behavior in the system. This paper will describe models of two electrical components, a battery and a supercapacitor, which have been modeled in two ways: (i) modeling the plant and controller using block diagrams in Simulink and (ii) modeling the plant and controller in Dymola followed by compiling this model to an S-function for simulation in Simulink. Both the battery and supercapacitor model are based on impedance spectroscopy measurements and can be used for highly dynamic simulations.
Technical Paper

Dynamic Thermal Model of Li-Ion Battery for Predictive Behavior in Hybrid and Fuel Cell Vehicles

2003-06-23
2003-01-2286
Li-Ion battery is attractive for HEVs and FCEVs because of its high power density and lack of memory effect. However, high battery temperatures during operation result in a short battery lifespan and degraded performance. To address this issue, battery manufacturers and OEMs have used different pre-set cooling strategies. Unlike the pre-set cooling strategy this thermal model forecasts battery temperatures, allows a better usage of the battery system, responds to battery power demand and maintains battery temperature limits. This paper discusses the real-time control of the battery cooling including battery stress analysis. The authors present a dynamic thermal model for the Li-Ion battery system using the finite-volume method and discuss transient battery thermal characteristics and real-time battery cooling control under various battery duty cycles. Validation results of the model are presented in this paper.
Technical Paper

Ford's H2RV: An Industry First HEV Propelled with a H2 Fueled Engine - A Fuel Efficient and Clean Solution for Sustainable Mobility

2004-03-08
2004-01-0058
Ford's H2RV is a Hydrogen engine propelled Hybrid Electric concept Vehicle that was unveiled and driven at Ford's Centennial Show in June 2003. This vehicle is an industry first by an OEM that demonstrates the concept and the marriage of a HEV powertrain with a supercharged Hydrogen ICE that propels the vehicle. Just as Model T was the car of the 20th century, Model U is the vehicle for the 21st century. The powertrain utilizes compressed gaseous hydrogen as fuel, a supercharged 2.3L internal combustion engine, a 25 kW traction motor drive, the electric converterless transmission, regenerative braking, an advanced lithium ion battery, electric power assist steering, electronic throttle and Vehicle System Controller (VSC). The vehicle could deliver a projected fuel economy of 45 mpg and near zero emissions without compromise to performance.
Technical Paper

NVH Challenges and Improvements Implemented in Ford H2RV: An HEV Propelled with a Supercharged Hydrogen Internal Combustion Engine

2004-03-08
2004-01-0061
Ford's H2RV (Hydrogen Hybrid Research Vehicle) uses a Hydrogen fueled Internal Combustion Engine. This engine has a higher compression ratio and a faster fuel-burning rate compared to a conventional gasoline engine. The conventional flywheel is replaced with an electric motor in the hybrid powertrain, which causes higher crankshaft torsionals and is a major NVH source. The engine has a centrifugal supercharger mounted on its front-end dress, which is a big source of NVH. Fans are used to cool the high voltage batteries and to provide ventilation of H2 in the case of a leakage. The body sheet metal has several holes for passive H2 ventilation, battery cooling, plumbing lines, and harness routing. Underhood hardware, due to the hybrid transmission and the H2 ICE, created major packaging challenges for the intake and FEAD NVH. The exhaust muffler volume was limited due to the installation of high voltage batteries and underbody H2 fuel tanks.
X