Refine Your Search

Topic

Search Results

Technical Paper

Experimental Investigation of Smoke Emission Dependent upon Engine Operating Conditions

1997-05-01
971658
Smoke is emitted in diesel engines because fuel injected into the combustion chamber burns with insufficient oxygen. The emission smoke from diesel engines is a very important air pollution problem. Smoke emission, which is believed to be largely related to the diffusion combustion in diesel engines, results from pyrolysis of fuel not mixed with air. Therefore, the smoke emission is dependent on diffusion combustion phenomena, which are controlled by engine parameters. This paper presents an analysis of combustion by relating the smoke emission with heat release in diesel engines. An analysis is made of the diffusion combustion quantity, the smoke emission, and the fraction of diffusion combustion as related to the engine parameters which are air-fuel ratio, injection timing, and engine speed.
Technical Paper

Effects of Piston-Ring Dynamics on Ring/Groove Wear and Oil Consumption in a Diesel Engine

1997-02-24
970835
The wear patterns of the rings and grooves of a diesel engine were analyzed by using a ring dynamics/gas flow model and a ring-pack oil film thickness model. The analysis focused primarily on the contact pressure distribution on the ring sides and grooves as well as on the contact location on the ring running surfaces. Analysis was performed for both new and worn ring/groove profiles. Calculated results are consistent with the measured wear patterns. The effects of groove tilt and static twist on the development of wear patterns on the ring sides, grooves, and ring running surfaces were studied. Ring flutter was observed from the calculation and its effect on oil transport was discussed. Up-scraping of the top ring was studied by considering ring dynamic twist and piston tilt. This work shows that the models used have potential for providing practical guidance to optimizing the ring pack and ring grooves to control wear and reduce oil consumption.
Technical Paper

A Piston Ring-Pack Film Thickness and Friction Model for Multigrade Oils and Rough Surfaces

1996-10-01
962032
A complete one-dimensional mixed lubrication model has been developed to predict oil film thickness and friction of the piston ring-pack. An average flow model and a roughness contact model are used to consider the effects of surface roughness on both hydrodynamic and boundary lubrication. Effects of shear-thinning and liner temperature on lubricant viscosity are included. An inlet condition is applied by considering the unsteady wetting location at the leading edge of the ring. A ‘film non-separation’ exit condition is proposed to replace Reynolds exit condition when the oil squeezing becomes dominant. Three lubrication modes are considered in the model, namely, pure hydrodynamic, mixed, and pure boundary lubrication. All of these considerations are crucial for studying the oil transport, asperity contact, and friction especially in the top dead center (TDC) region where the oil control ring cannot reach.
Technical Paper

The Possible Role of Surface Tension in the Reduction of Top Ring Drag

1993-10-01
932781
In a small (4.5 KW) diesel engine, Laser Induced Fluorescence (LIF) has been used to produce detailed oil film thickness measurements around the top piston ring and liner near midstroke. The flow is “Newtonian” under the ring in the sense that using a high shear rate viscosity at the liner temperature is appropriate. The geometry corresponds everywhere to that required for a valid Reynolds approximation. Classical boundary conditions are not applicable for the high strain rates (106-107 s-1) under the piston rings of typical modem engines. A new boundary condition is developed to explain the data. The exit surface shear stress is shown to scale with a Marangoni-like (surface tension gradient) effect. By increasing surface tension, it is possible to make substantial reductions in friction for a fixed high shear viscosity.
Technical Paper

Photographic and Performance Studies of Diesel Combustion With a Rapid Compression Machine

1974-02-01
740948
Photographic and performance studies with a Rapid Compression Machine at the Massachusetts Institute of Technology have been used to develop insight into the role of mixing in diesel engine combustion. Combustion photographs and performance data were analyzed. The experiments simulate a single fuel spray in an open chamber diesel engine with direct injection. The effects of droplet formation and evaporation on mixing are examined. It is concluded that mixing is controlled by the rate of entrainment of air by the fuel spray rather than the dynamics of single droplets. Experimental data on the geometry of a jet in a quiescent combustion chamber were compared with a two-phase jet model; a jet model based on empirical turbulent entrainment coefficients was developed to predict the motion of a fuel jet in a combustion chamber with swirl. Good agreement between theory and experiment was obtained.
Technical Paper

Dual-Fuel Gasoline-Alcohol Engines for Heavy Duty Trucks: Lower Emissions, Flexible-Fuel Alternative to Diesel Engines

2018-04-03
2018-01-0888
Long-haul and other heavy-duty trucks, presently almost entirely powered by diesel fuel, face challenges meeting worldwide needs for greatly reducing nitrogen oxide (NOx) emissions. Dual-fuel gasoline-alcohol engines could potentially provide a means to cost-effectively meet this need at large scale in the relatively near term. They could also provide reductions in greenhouse gas emissions. These spark ignition (SI) flexible fuel engines can provide operation over a wide fuel range from mainly gasoline use to 100% alcohol use. The alcohol can be ethanol or methanol. Use of stoichiometric operation and a three-way catalytic converter can reduce NOx by around 90% relative to emissions from diesel engines with state of the art exhaust treatment.
Technical Paper

More Efficient Combustion in Small Open Chamber Diesel Engines

1972-02-01
720775
Until quite recently, it appeared that there was an effective lower limit on bore size in open-chamber diesel engines. This paper presents a technique for improving combustion in the small open-chamber diesel engine. Recent work at MIT on a 2-1/2 in bore, short-stroke diesel engine has demonstrated that good efficiency can be obtained through a combination of a large-hole nozzle and the use of air swirl to prevent overpenetration. There is some indication that good efficiency can be obtained over a wider operating range than standard diesel practice. A method of design analysis for this type of engine is presented, along with techniques for estimating the swirl and nozzle design parameters.
Technical Paper

Alcohol Fueled Heavy Duty Vehicles Using Clean, High Efficiency Engines

2010-10-25
2010-01-2199
Non-petroleum based liquid fuels are essential for reducing oil dependence and greenhouse gas generation. Increased substitution of alcohol fuel for petroleum based fuels could be achieved by 1) use in high efficiency spark ignition engines that are employed for heavy duty as well as light duty operation and 2) use of methanol as well as ethanol. Methanol is the liquid fuel that is most efficiently produced from thermo-chemical gasification of coal, natural gas, waste or biomass. Ethanol can also be produced by this process but at lower efficiency and higher cost. Coal derived methanol is in limited initial use as a transportation fuel in China. Methanol could potentially be produced from natural gas at an economically competitive fuel costs, and with essentially the same greenhouse gas impact as gasoline. Waste derived methanol could also be an affordable low carbon fuel.
Technical Paper

Oil Conditioning as a Means to Minimize Lubricant Ash Requirements and Extend Oil Drain Interval

2009-06-15
2009-01-1782
A novel approach to condition the lubricant at a fixed station in the oil circuit is explored as a potential means to reduce additive requirements or increase oil drain interval. This study examines the performance of an innovative oil filter which releases no additives into the lubricant, yet enhances the acid control function typically performed by detergent and dispersant additives. The filter chemically conditions the crankcase oil during engine operation by sequestering acidic compounds derived from engine combustion and lubricant degradation. Long duration tests with a heavy-duty diesel engine show that the oil conditioning with the strong base filter reduces lubricant acidity (TAN), improves Total Base Number (TBN) retention, and slows the rate of viscosity increase and oxidation. The results also indicate that there may be a reduction in wear and corrosion.
Technical Paper

Optimizing Base Oil Viscosity Temperature Dependence For Power Cylinder Friction Reduction

2014-04-01
2014-01-1658
Lubricant viscosity along the engine cylinder liner varies by an order of magnitude due to local temperature variation and vaporization effects. Tremendous potential exists for fuel economy improvement by optimizing local viscosity variations for specific operating conditions. Methods for analytical estimation of friction and wear in the power-cylinder system are reviewed and used to quantify opportunities for improving mechanical efficiency and fuel economy through lubricant formulation tailored specifically to liner temperature distributions. Temperature dependent variations in kinematic viscosity, density, shear thinning, and lubricant composition are investigated. Models incorporating the modified Reynolds equation were used to estimate friction and wear under the top ring and piston skirt of a typical 11.0 liter diesel engine.
Technical Paper

Real-Time Engine and Aftertreatment System Control Using Fast Response Particulate Filter Sensors

2016-04-05
2016-01-0918
Radio frequency (RF)-based sensors provide a direct measure of the particulate filter loading state. In contrast to particulate matter (PM) sensors, which monitor the concentration of PM in the exhaust gas stream for on-board diagnostics purposes, RF sensors have historically been applied to monitor and control the particulate filter regeneration process. This work developed an RF-based particulate filter control system utilizing both conventional and fast response RF sensors, and evaluated the feasibility of applying fast-response RF sensors to provide a real-time measurement of engine-out PM emissions. Testing with a light-duty diesel engine equipped with fast response RF sensors investigated the potential to utilize the particulate filter itself as an engine-out soot sensor.
Technical Paper

A Model For Estimating Oil Vaporization From The Cylinder Liner As A Contributing Mechanism to Engine Oil Consumption

1999-05-03
1999-01-1520
A model has been developed for estimating the oil vaporization rate from the cylinder liner of a reciprocating engine. The model uses input from an external cycle simulator and an external liner oil film thickness model. It allows for the change in oil composition and the change in oil film thickness due to vaporization. It also estimates how the passage of the compression and scraper rings combine with the vaporization to influence the steady-state composition of the oil layer in the upper ring pack. Computer model results are presented for a compression-ignition engine using a range of liner temperatures, several engine speeds, and two different oils. Vaporization is found to be highly dependent on liner temperature and steady-state oil composition. The steady-state oil composition near the top of the cylinder is found to be significantly different than the composition of the oil near the bottom of the cylinder.
Technical Paper

Modeling and Measurement of Tribological Parameters between Piston Rings and Liner in Turbocharged Diesel Engine

2007-04-16
2007-01-1440
This paper presents tribological modeling, experimental work, and validation of tribology parameters of a single cylinder turbocharged diesel engine run at various loads, speeds, intake boost pressures, and cylinder liner temperatures. Analysis were made on piston rings and liner materials, rings mechanical and thermal loads, contact pressure between rings and liner, and lubricant conditions. The engine tribology parameters were measured, and used to validate the engine tribology models. These tribology parameters are: oil film thickness, coefficient of friction between rings and liner, friction force, friction power, friction torque, shear rate, shear stress and wear of the sliding surfaces. In order to measure the oil film thickness between rings and liner, a single cylinder AVL turbocharged diesel engine was instrumented to accept the difference in voltage drop method between rings, oil film, and liner.
Technical Paper

Comparative Analysis of Automotive Powertrain Choices for the Next 25 Years

2007-04-16
2007-01-1605
This paper assesses the potential improvement of automotive powertrain technologies 25 years into the future. The powertrain types assessed include naturally-aspirated gasoline engines, turbocharged gasoline engines, diesel engines, gasoline-electric hybrids, and various advanced transmissions. Advancements in aerodynamics, vehicle weight reduction and tire rolling friction are also taken into account. The objective of the comparison is the potential of anticipated improvements in these powertrain technologies for reducing petroleum consumption and greenhouse gas emissions at the same level of performance as current vehicles in the U.S.A. The fuel consumption and performance of future vehicles was estimated using a combination of scaling laws and detailed vehicle simulations. The results indicate that there is significant potential for reduction of fuel consumption for all the powertrains examined.
Technical Paper

Measurements of Gas Temperature in a HCCI Engine Using a Fourier Domain Mode Locking Laser

2006-04-03
2006-01-1366
Initial measurements of water vapor temperature using a Fourier domain mode locking (FDML) laser were performed in a carefully controlled homogenous charge compression ignition engine with optical access. The gas temperature was inferred from water absorption spectra that were measured each 0.25 crank angle degrees (CAD) over a range of 150 CAD. Accuracy was tested in a well controlled shock tube experiment. This paper will validate the potential of this FDML laser in combustion applications.
Technical Paper

Dramatic Emissions Reductions with a Direct Injection Diesel Engine Burning Supercritical Fuel/Water Mixtures

2001-09-24
2001-01-3526
Research conducted at the Supercritical (SC) facility of MIT's Energy Laboratory provided visual confirmation of a single phase, homogeneous water/fuel mixture near the critical temperature and pressure of water. Equal volumes of water and diesel fuel were observed to be completely miscible, and high temperature polymerization of fuel molecules was not found. This is believed to be the first observation of a solution of diesel fuel and water. This mixture was subsequently burned under atmospheric spray conditions with very low NOx, smoke, CO, and HC. The results suggested that in-cylinder combustion in a compression ignition engine was warranted. Tests were conducted in a single cylinder, air-cooled, naturally aspirated, 3.5 horsepower Yanmar diesel engine. The compressibility of this new fuel composition necessitated a modified injector to provide smooth operation.
Journal Article

In-Situ Optical Analysis of Ash Formation and Transport in Diesel Particulate Filters During Active and Passive DPF Regeneration Processes

2013-04-08
2013-01-0519
The formation and transport processes governing the build-up of incombustible ash deposits in diesel particulate filters (DPF) are influenced to a large extent by the filter's operating history. More specifically, the regeneration process, whether active, passive, or some variation of the two, has long been assumed to exert significant influence on the resulting ash characteristics. Until recently, only limited circumstantial evidence was available to describe differences in ash properties and distribution impacting DPF performance for filters subjected to different regeneration strategies. This work presents, for the first time, results from a comprehensive series of evaluations with optically-accessible DPF core samples showing the processes controlling the formation, transport, and interaction of the soot and ash deposits over a range of DPF regeneration conditions.
Journal Article

Ash Accumulation and Impact on Sintered Metal Fiber Diesel Particulate Filters

2015-04-14
2015-01-1012
While metal fiber filters have successfully shown a high degree of particle retention functionality for various sizes of diesel engines with a low pressure drop and a relatively high filtration efficiency, little is known about the effects of lubricant-derived ash on the fiber filter systems. Sintered metal fiber filters (SMF-DPF), when used downstream from a diesel engine, effectively trap and oxidize diesel particulate matter via an electrically heated regeneration process where a specific voltage and current are applied to the sintered alloy fibers. In this manner the filter media essentially acts as a resistive heater to generate temperatures high enough to oxidize the carbonaceous particulate matter, which is typically in excess of 600°C.
Journal Article

Sensitivity Analysis of Ash Packing and Distribution in Diesel Particulate Filters to Transient Changes in Exhaust Conditions

2012-04-16
2012-01-1093
Current CJ-4 lubricant specifications place chemical limits on diesel engine oil formulations to minimize the accumulation of lubricant-derived ash in diesel particulate filters (DPF). While lubricant additive chemistry plays a strong role in determining the amount and type of ash accumulated in the DPF, a number of additional factors play important roles as well. Relative to soot particles, whose residence time in the DPF is short-lived, ash particles remain in the filter for a significant fraction of the filter's useful life. While it is well-known that the properties (packing density, porosity, permeability) of soot deposits are primarily controlled by the local exhaust conditions at the time of particle deposition in the DPF, the cumulative operating history of the filter plays a much stronger role in controlling the properties and distribution of the accumulated ash.
Journal Article

Analysis of Ash in Low Mileage, Rapid Aged, and High Mileage Gasoline Exhaust Particle Filters

2017-03-28
2017-01-0930
To meet future particle mass and particle number standards, gasoline vehicles may require particle control, either by way of an exhaust gas filter and/or engine modifications. Soot levels for gasoline engines are much lower than diesel engines; however, non-combustible material (ash) will be collected that can potentially cause increased backpressure, reduced power, and lower fuel economy. The purpose of this work was to examine the ash loading of gasoline particle filters (GPFs) during rapid aging cycles and at real time low mileages, and compare the filter performances to both fresh and very high mileage filters. Current rapid aging cycles for gasoline exhaust systems are designed to degrade the three-way catalyst washcoat both hydrothermally and chemically to represent full useful life catalysts. The ash generated during rapid aging was low in quantity although similar in quality to real time ash. Filters were also examined after a low mileage break-in of approximately 3000 km.
X