Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Using the Hybrid FE-SEA Method to Predict Structure-borne Noise Transmission in aTrimmed Automotive Vehicle

2007-05-15
2007-01-2181
A Hybrid method that rigorously couples Statistical Energy Analysis (SEA) and Finite Element Analysis (FEA) has been used to predict interior noise levels in a trimmed vehicle due to broadband structure-borne excitation from 200Hz to 1000Hz. This paper illustrates how the Hybrid FE-SEA technique was applied to successfully predict the car response by partitioning the full vehicle into stiff components described with FE and modally dense components described with SEA. Additionally, it is demonstrated how detailed local FE models can be used to improve SEA descriptions of car panels and couplings. The vibration response of the untrimmed body-in-white is validated against experiments. Next, the radiation efficiency and vibration response of bare and trimmed vehicle panels are compared against reference numerical results. Finally, interior noise levels in bare and trimmed configurations are predicted and results from a noise path contribution analysis are presented.
Technical Paper

Modeling process and validation of Hybrid FE-SEA method to structure-borne noise paths in a trimmed automotive vehicle

2008-03-30
2008-36-0574
The Finite Element Method (FEM) and the Statistical Energy Analysis (SEA) are standard methods in the automotive industry for the prediction of vibrational and acoustical response of vehicles. However, both methods are not capable of handling the so called “mid frequency problem”, where both short and long wavelength components are present in the same system. A Hybrid method has been recently proposed that rigorously couples SEA and FEM. In this work, the Hybrid FE-SEA method is used to predict interior noise levels in a trimmed full vehicle due to broadband structure-borne excitation from 200Hz to 1000Hz. The process includes the partitioning of the full vehicle into stiff components described with FE and modally dense components described with SEA. It is also demonstrated how detailed local FE models can be used to improve SEA descriptions of car panels and couplings.
X