Refine Your Search

Topic

Author

Affiliation

Search Results

Video

Cooling Airflow System Modeling in CFD Using Assumption of Stationary Flow

2011-11-29
Today CFD is an important tool for engineers in the automotive industry who model and simulate fluid flow. For the complex field of Underhood Thermal Management, CFD has become a very important tool to engineer the cooling airflow process in the engine bay of vehicles. Presenter Peter Gullberg, Chalmers University of Technology
Technical Paper

Influence of Ethanol Content in Gasoline on Speciated Emissions from a Direct Injection Stratified Charge SI Engine

2001-03-05
2001-01-1206
The influence of ethanol content in gasoline on speciated emissions from a direct injection stratified charge (DISC) SI engine is assessed. The engine tested is a commercial DISC one that has a wall guided combustion system. The emissions were analyzed using both Fourier transform infrared (FTIR) spectroscopy and conventional emission measurement equipment. Seven fuels were compared in the study. The first range of fuels was of alkylate type, designed to have 0, 5, 10 and 15 % ethanol in gasoline without changing the evaporation curve. European emissions certification fuel was tested, with and without 5 % ethanol, and finally a specially blended high volatility gasoline was also tested. The measurements were conducted at part-load, where the combustion is in stratified mode. The engine used a series engine control unit (ECU) that regulated the fuel injection, ignition and exhaust gas recirculation (EGR).
Technical Paper

Flow Visualization Study of an HVAC Module Operated in Water

2001-05-14
2001-01-1702
Centrifugal blowers serve as the primary source of airflow and aero-acoustic noise in automotive HVAC modules. Flow field measurements inside blowers indicate very complex flow patterns. A detailed flow visualization study was conducted on an actual HVAC fan module operated in water under dynamically similar conditions as those in air with the purpose of studying the complex flow patterns in order to improve the aerodynamic performance of the fan/scroll casing and diffuser components. Fan-scroll/diffuser interaction was also studied as function of fan speed. Conventional and special (shear thickening) dye injection flow visualization techniques were used to study the complex 3-dimensional vortical and unsteady flow patterns that occur in typical HVAC fans. A major advantage of the flow visualization technique using shear-thickening dye is its usefulness in high the Reynolds number flows that are typically encountered inside HVAC modules.
Technical Paper

Diesel Combustion with Reduced Nozzle Orifice Diameter

2001-05-07
2001-01-2010
Future emission legislation will require substantial reductions of NOx and particulate matter (PM) emissions from diesel engines. The combustion and emission formation in a diesel engine is governed mainly by spray formation and mixing. Important parameters governing these are droplet size, distribution, concentration and injection velocity. Smaller orifices are believed to give smaller droplet size, even with reduced injection pressure, which leads to better fuel atomization, faster evaporation and better mixing. In this paper experiments are performed on a single cylinder heavy-duty direct injection diesel engine with three nozzles of different orifice diameters (Ø0.227 mm, Ø0.130 mm, Ø0.090 mm). Two loads (low and medium) and three speeds were investigated. The test results confirmed a substantial reduction in HC and soot emissions at lower loads for the small orifices.
Technical Paper

Misfire Detection for Prechamber SI Engines Using Ion-Sensing and Rotational Speed Measurements

2001-03-05
2001-01-0993
A misfire detection study on a prechamber equipped spark ignition gas combustion engine is presented. The study shows that the logarithm of the absolute valued ion current can be linearly weighted in order to detect misfire over a broad load range with only one threshold. Results also show that a very low complexity misfire detector can achieve good performance when a linear weighting technique is applied to the squared rotational speed samples. The detection performance based on the combination of rotational speed and ionization measurements is also presented.
Technical Paper

Experimental Study of the Combustion Process in a Heavy–Duty DI Diesel Engine for Different Injection Scenarios

2003-05-19
2003-01-1783
The effects of injection pressure and duration on exhaust gas emissions, sooting flame temperature, and soot distribution for a heavy–duty single cylinder DI diesel engine were investigated experimentally. The experimental analysis included use of two–color pyrometry as well as “conventional” measuring techniques. Optical access into the engine was obtained through an endoscope mounted in the cylinder head. The sooting flame temperature and soot distribution were evaluated from the flame images using the AVL VisioScope™ system. The results show that the NOx/soot trade–off curves could be improved by increasing injection pressure. An additional reduction could also be obtained if, for the same level of injection pressure, the injection duration was prolonged.
Technical Paper

A Study of the Influence of Nozzle Orifice Geometries on Fuel Evaporation using Laser-Induced Exciplex Fluorescence

2003-05-19
2003-01-1836
Projected stringent emissions legislation will make tough demands on engine development. For diesel engines, in which combustion and emissions formation are governed by the spray formation and mixing processes, fuel injection plays a major role in the future development of cleaner engines. It is therefore important to study the fundamental features of the fuel injection process. In an engine the fuel is injected at high pressure into a pressurized and hot environment of air, which causes droplet formation and fuel evaporation. The injected fuel then forms a gaseous phase surrounding the liquid phase. The amount of evaporated fuel in relation to the total amount of injected fuel is of importance for engine performance, i.e. ignition delay and mixing rate. In this paper, the fraction of evaporated fuel was determined for sprays, using different orifice diameters ranging from 0.100 mm up to 0.227 mm, with the aid of a high-pressure spray chamber.
Technical Paper

Numerical Evaluation of Dual Oxygenated Fuel Setup for DI Diesel Application

1997-05-01
971596
Methanol, MeOH, is one of the most attractive alternative fuels for internal combustion engines. In diesel applications, methanol's poor ignition properties necessitate the use of expensive additives for ignition improvement [1]. Dimethyl ether, DME, as a combustion improver for methanol, was recently evaluated in [2]. This study is directed towards a better understanding of the auto-ignition and combustion of a blend fuel composition consisting of liquid methanol and gaseous dimethyl ether aspirated with the combustion air by using the results of numerical simulation. The numerical model was based on the computer code KIVA-3. The computational results show that the use of DME as an ignition improver is only reasonable for gas temperatures below 900 K. At typical diesel conditions, an amount of DME in a quantity less than 10-15 volumetric percent of oxygen content in the combustion volume is sufficient for ignition improvement.
Technical Paper

Turbulent Flame Speed Closure Model: Further Development and Implementation for 3-D Simulation of Combustion in SI Engine

1998-10-19
982613
A Turbulent Flame Speed Closure Model is modified and implemented into the FIRE code for use in 3D computations of combustion in an SI-engine. The modifications are done to account for mixture inhomogeneity, and mixture compression through the dependency of local equivalence ratio, pressure and temperature on the chemical time scale and a global reaction time scale. The model is also subjected to further evaluation against experimental data, covering different mixture and turbulence conditions. The combustion process in a 4-valve pentroof combustion chamber is simulated and heat release rates and spatial flame distribution are evaluated against experimental data. The computations show good agreement with the experiments. The model has proven to be a robust and time effective simulation tool with good predictive ability.
Technical Paper

Randomness of Flame Kernel Development in Turbulent Gas Mixture

1998-10-19
982617
An expanding cylindrical laminar flame kernel affected by random external strain rates and diffusivity is numerically simulated in order to gain insight into the influence of small-scale turbulence on the combustion variability in engines. In the simulations, the kernel is strained, as a whole, by external velocity gradients randomly generated with either Gaussian or log-normal probability density functions. The influence of small-scale turbulent heat and mass transfer is modeled by turbulent diffusivity, the randomness of which is controlled by the fluctuations in the viscous dissipation averaged over the kernel volume. The computed results show that small-scale phenomena can substantially affect the quenching characteristics of a small flame kernel and the kernel growth history rj(t); the scatter of the computed curves of rf(t) being mainly controlled by the scatter of the duration of the initial stage of kernel development.
Technical Paper

Neat Dimethyl Ether: Is It Really Diesel Fuel of Promise?

1998-10-19
982537
The CFD model, based on the LANL KIVA-3 computer code, modified to account for the multi-step dimethyl ether, DME/air, oxidation chemistry, was developed and used to study the neat DME combustion dynamics in a constant volume at Diesel-like conditions and in the Volvo AH10A245DI Diesel engine. Constant volume simulations confirm high ignition quality of neat DME in air. The results of engine modeling illustrate that the injection schedule used for Diesel fuel is not optimal for DME. Surprisingly, the positive gain and peak pressure levels comparable with those for Diesel fuel were obtained using an early (∼ -20 ATDC) injection through a nozzle of a larger diameter at reduced injection pressures and velocities (∼150m/s) preventing too rapid spray atomization. At these conditions, combustion heat release has a specific two-stage character with a peak value placed behind the TDC.
Technical Paper

Considerations on Engine Design and Fuelling Technique Effects on Qualitative Combustion in Alcohol Diesel Engines

1998-10-19
982530
This paper depicts the main topics of the experimental investigation on alcohol engine development field, aiming at the engineering targets for the emission levels. The first part of this study was focused on engine design optimization for running on ethanol mixed with poly-ethylene glycol (PEG) as ignition improver. It was shown that some design changes in compression ratio, turbine casing, injector nozzle configuration and exhaust pressure governor (EPG) activation, lead to a better engine thermodynamics and its thermochemistry. The second objective of this study was the investigation of engine performance and emission levels, when the ignition improver diethyl ether (DEE) would be generated on board via catalytically dehydration of ethanol, and used directly as soluble mixture or separately fumigated.
Technical Paper

Testing and Evaluation of Ignition Improvers for Ethanol in a DI Diesel Engine

1995-10-01
952512
The ignition delay of ethanol with different nitrate and polyethylene glycol based ignition improvers was investigated in a single-cylinder DI Diesel engine. The nitrate-based improvers provided a shorter ignition delay than the polyethylene glycol improvers, but the results indicate that the efficiency of the polyethylene glycol improvers increases with the length of the molecular chains. Comparison with reference fuels gives a cetane number of approximately 44 for ethanol with 4% of the best nitrate-based improver versus 40 for ethanol with 7% polyethylene glycol improver. It is shown, that the random ignition delay for all the fuels has a normal distribution, and that the reference fuel of every measurement series has a constant expected ignition delay. Ignition delay measurements in a constant-volume combustion vessel failed to produce the same trends as in the engine for the ethanol fuels.
Technical Paper

Oxidation of Hydrocarbons Released from Piston Crevices of S.I. Engines

1995-10-01
952539
This work presents a numerical method for predictions of HC oxidation in the cold turbulent wall jet emerging from the piston top land crevice in an S.I. engine, using a complex chemical reaction model. The method has been applied to an engine model geometry with the aim to predict the HC oxidation rate under engine - relevant conditions. According to the simulation a large amount of HC survives oxidation due to the long ignition delay of the wall jet emitted from the crevice. This ignition delay, in turn depends mainly on chemical composition and temperature of the gas mixture in the crevice and also on the temperature distribution in the cylinder boundary layer.
Technical Paper

Influence of Valve Overlap Strategies on Residual Gas Fraction and Combustion in a Spark-Ignition Engine at Idle

1997-10-01
972936
This work investigates the influence of valve overlap strategies on residual gas fraction, combustion parameters and cycle to cycle IMEP variations on a Volvo four-valve pentroof single cylinder SI engine at idle. The mass fraction of residual gas was recorded as a function of valve timing. The measurements employed both symmetrically positioned overlaps with varied overlap duration and constant overlap duration where the overlap center position was displaced relative to TDC. The engine was running on true idle and the exhaust-intake pressure difference was approximately 0.7 bar. Results from one dimensional engine simulations have been compared with the experimental data. It is shown that there are factors affecting the burn duration as much as, or under certain circumstances even more than, the residual gas fraction. A displacement of the overlap center position 10 CAD ATDC results in increased burn duration and cyclic IMEP variations while the residual gas fraction decreases.
Technical Paper

Comparison of Cylinder Pressure Based Knock Detection Methods

1997-10-01
972932
Eight different cylinder pressure trace based knock detection methods are compared using two reference cycles of different time-frequency content, reflecting single blast and developing blast, and a test population of 300 knocking cycles. It is shown that the choice of the pass window used for the pressure data has no significant effect on the results of the different methods, except for the KI20. In contrast to other authors, no sudden step in the knock characteristics is expected; first, because the data investigated contain only knocking cycles, and second, because a smooth transition between normal combustion and knock is expected, according to recent knock theory. It is not only the correlation coefficient, but also the Kendall coefficient of concordance, that is used to investigate the differences between the knock classification methods.
Technical Paper

A Simple Model of Unsteady Turbulent Flame Propagation

1997-10-01
972993
A model of premixed turbulent combustion is modified for multi-dimensional computations of SI engines. This approach is based on the use of turbulent flame speed in order to suggest a closed balance equation for the mean combustion progress variable. The model includes a single unknown input parameter to be tuned. This model is tested against two sets of experimental data obtained by Bradley et al [17, 18 and 19] and Karpov and Severin [15] in fan-stirred bombs. The model quantitatively predicts the development of the turbulent flame speed, the effects of the initial pressure, temperature, and mixture composition on the turbulent flame speed, and the effects of r.m.s. turbulent velocity and burning mixture composition on the rate of the pressure rise. These results were computed with the same value of the aforementioned unknown input parameter of the model.
Technical Paper

Injection Orifice Shape: Effects on Combustion and Emission Formation in Diesel Engines

1997-10-01
972964
A series of experimental studies of diesel spray combustion was carried out using non-circular and back-step orifices. The experiments were performed in a single-cylinder engine and in a constant volume combustion chamber. In the engine tests, elliptic orifices with an aspect ratio of approximately 2:1 were compared with circular orifices. The elliptic orifices had sharp inlets and the circular orifices had rounded inlets. Elliptic orifices aligned with either the minor axis or the major axis in the direction of the nozzle tip were tested. The orifice shapes had minor effects on the heat release, ignition delay, and emissions of smoke, CO and HC. However, substantial differences were observed for emissions of NOx: for the vertical elliptic orifices, emissions up to 37.6 percent lower than with circular orifices were observed. In the combustion bomb tests, rectangular and back-step orifices were compared with circular orifices, all with sharp inlets.
Technical Paper

Knock in Spark-Ignition Engines: End-Gas Temperature Measurements Using Rotational CARS and Detailed Kinetic Calculations of the Autoignition Process

1997-05-01
971669
Cycle-resolved end-gas temperatures were measured using dual-broadband rotational CARS in a single-cylinder spark-ignition engine. Simultaneous cylinder pressure measurements were used as an indicator for knock and as input data to numerical calculations. The chemical processes in the end-gas have been analysed with a detailed kinetic mechanism for mixtures of iso-octane and n-heptane at different Research Octane Numbers (RON'S). The end-gas is modelled as a homogeneous reactor that is compressed or expanded by the piston movement and the flame propagation in the cylinder. The calculated temperatures are in agreement with the temperatures evaluated from CARS measurements. It is found that calculations with different RON'S of the fuel lead to different levels of radical concentrations in the end-gas. The apperance of the first stage of the autoignition process is marginally influenced by the RON, while the ignition delay of the second stage is increased with increasing RON.
Technical Paper

Using Multi-Rate Filter Banks to Detect Internal Combustion Engine Knock

1997-05-01
971670
The wavelet transform is used in the analysis of the cylinder pressure trace and the ionic current trace of a knocking, single-cylinder, spark ignition engine. Using the wavelet transform offers a significant reduction of mathematical operations when compared with traditional filtering techniques based on the Fourier transform. It is shown that conventional knock analysis in terms of average energy in the time domain (AETD), corresponding to the signal's energy content, and maximum amplitude in the time domain (MATD), corresponding to the maximum amplitude of the bandpass filtered signal, can be applied to both the reconstructed filtered cylinder pressure and the wavelet coefficients. The use of the filter coefficients makes possible a significant additional reduction in calculation effort in comparison with filters based on the windowed Fourier transform.
X