Refine Your Search

Search Results

Viewing 1 to 10 of 10
Technical Paper

Modification of a Diesel Oil Surrogate Model for 3D CFD Simulation of Conventional and HCCI Combustion

2008-10-06
2008-01-2410
This paper describes an analysis of the Diesel Oil Surrogate (DOS) model used at Chalmers University (Sweden), including 70 species participating in 310 reactions, and subsequent improvements prompted by the model's systematic tendency to under-predict the combustion intensity in simulations of kinetically-driven combustion modes, e.g. Homogeneous Charged Compression Ignition (HCCI). Key bases of the model are the properties of a model Diesel fuel with the molecular formula C14H28. In the vapor phase, a global reaction decomposes the starting fuel, C14H28, into its constituent components; n-heptane (C7H16) and toluene (C7H8). This global reaction was modified to yield a higher n-heptane:toluene ratio, due to the importance of preserving an n-heptane-like cetane number.
Technical Paper

It's in the Eye of the Beholder: Who Should be the User of Computer Manikin Tools?

2003-06-17
2003-01-2196
The aim of this study was to examine the influence of computer manikin users' background and knowledge for the results of a computer manikin simulation. Subjects taking part in the study were either production engineers or ergonomists. A manual task that presented production and ergonomics problems was used. The task was simulated prior to the subjects' sessions, using the computer manikin software Jack. During the sessions, the animated simulation was shown to the test subject. Results show that there are differences in how production engineers and ergonomists interpret results from a manikin simulation. Depending on the user's background, certain aspects that are difficult to visualise with the computer manikin were interpreted differently, regarding e.g. detected problems and holistic perspectives.
Technical Paper

Heavy Duty Diesel Engine Modeling with Layered Artificial Neural Network Structures

2018-04-03
2018-01-0870
In order to meet emissions and power requirements, modern engine design has evolved in complexity and control. The cost and time restraints of calibration and testing of various control strategies have made virtual testing environments increasingly popular. Using Hardware-in-the-Loop (HiL), Volvo Penta has built a virtual test rig named VIRTEC for efficient engine testing, using a model simulating a fully instrumented engine. This paper presents an innovative Artificial Neural Network (ANN) based model for engine simulations in HiL environment. The engine model, herein called Artificial Neural Network Engine (ANN-E), was built for D8-600 hp Volvo Penta engine, and directly implemented in the VIRTEC system. ANN-E uses a combination of feedforward and recursive ANNs, processing 7 actuator signals from the engine management system (EMS) to provide 30 output signals.
Technical Paper

A Model of Turbocharged Engines as Dynamic Drivetrain Members

1993-11-01
933050
An engine model for use in computer simulation of transient behavior in drivetrain and vehicle systems is presented. Two elements, important for deviation (e.g. turbo-lag) from steady state characteristics, are the inertia of the supercharging unit (turbo shaft) and the fuel injection control system. No extensive combustion calculations are carried out within the model. Instead it uses condensed results from existing combustion models and measurements. The model is semi-empirical. Some of the engine specific properties needed for simulation are (e.g. for a turbocharged diesel): engine data in steady state operation, mappings of compressor and turbine performance, inertia of the engine components condensed to the crankshaft, turbo shaft inertia, displacement, compression ratio and the essentials of the fuel injection control strategy. Input parameters to the computer program based on the model are accelerator pedal position and external torque acting on the flywheel.
Technical Paper

A Comparative Study on Knock Occurrence for Different Fuel Octane Number

2018-09-10
2018-01-1674
Combustion with knock is an abnormal phenomenon which constrains the engine performance, thermal efficiency and longevity. The advance timing of the ignition system requires it to be updated with respect to fuel octane number variation. The production series engines are calibrated by the manufacturer to run with a special fuel octane number. In the experiment, the engine was operated at different speeds, loads, spark advance timings and consumed commercial gasoline with research octane numbers (RON) 95, 97 and 100. A 1-dimensional validated engine combustion model was run in the GT-Power software to simulate the engine conditions required to define the knock envelope at the same engine operation conditions as experiment. The knock intensity investigation due to spark advance sweep shows that combustion with noise was started after a specific advance ignition timing and the audible knock occur by increasing the advance timing.
Journal Article

Comparison of CNN and LSTM for Modeling Virtual Sensors in an Engine

2020-04-14
2020-01-0735
The automotive industry makes extensive use of virtual models to increase efficiency during the development stage. The complexity of such virtual models increases with the complexity of the process that they describe, and thus new methods for their development are constantly evaluated. Among many others, data-driven techniques and machine learning offer promising results, creating deep neural networks that map complex input-output relations. This work aims at comparing the performance of two different neural network architectures for the estimation of the engine state and emissions (flow fuel, NOx and soot). More specifically, Convolutional Neural Network (CNN) and Long-Short Term Memory (LSTM) will be evaluated in terms of performance, using different techniques to increase the model generalization. During the learning stage data from different engine cycles are fed to the neural networks.
Technical Paper

ANNIE, a Tool for Integrating Ergonomics in the Design of Car Interiors

1999-09-28
1999-01-3372
In the ANNIE project - Applications of Neural Networks to Integrated Ergonomics - BE96-3433, a tool for integrating ergonomics into the design process is developed. This paper presents some features in the current ANNIE as applied to the design of car interiors. A variant of the ERGOMan mannequin with vision is controlled by a hybrid system for neuro-fuzzy simulation. It is trained by using an Elite system for registration of movements. An example of a trajectory generated by the system is shown. A fuzzy model is used for comfort evaluation. An experiment was performed to test its feasibility and it showed very promising results.
Technical Paper

A 1D Method for Transient Simulations of Cooling Systems with Non-Uniform Temperature and Flow Boundaries Extracted from a 3D CFD Solution

2015-04-14
2015-01-0337
The current work investigates a method in 1D modeling of cooling systems including discretized cooling package with non-uniform boundary conditions. In a stacked cooling package the heat transfer through each heat exchanger depends on the mass flows and temperature fields. These are a result of complex three-dimensional phenomena, which take place in the under-hood and are highly non-uniform. A typical approach in 1D simulations is to assume these to be uniform, which reduces the authenticity of the simulation and calls for additional calibrations, normally done with input from test measurements. The presented work employs 3D CFD simulations of complete vehicle in STAR-CCM+ to perform a comprehensive study of mass-flow and thermal distribution over the inlet of the cooling package of a Volvo FM commercial vehicle in several steady-state operating points.
Technical Paper

Drivers’ Perceived Sensitivity to Crosswinds and to Low-Frequency Aerodynamic Lift Fluctuations

2023-04-11
2023-01-0659
The automotive industry continues to increase the utilization of computer-aided engineering. This put demands on finding reliable objective measures that correlate to subjective driver assessments on driving stability performance. However, the drivers’ subjective perception of driving stability can be difficult to quantify objectively, especially on test tracks where the wind conditions cannot be controlled. The advancement in driving simulator technology may enable evaluation of driving stability with high repeatability. The purpose of this study is to correlate the subjective assessment of driving stability to reliable objective measures and to evaluate the usefulness of a driving simulator for the subjective assessment. Two different driver clinic studies were performed in a state-of-the-art driving simulator. The first study included 38 drivers (professional, experienced and common drivers) and focused on crosswind gust sensitivity.
Technical Paper

Predictive Model of Driver’s Perception of Vehicle Stability under Aerodynamic Excitation

2023-04-11
2023-01-0903
In vehicle development, a subjective evaluation of the vehicle’s behavior at high speeds is usually conducted by experienced drivers with the objective of assessing driving stability. To avoid late design changes, it is desirable to predict and resolve perceived instabilities early in the development phase. In this study, a mathematical model is developed from measurements during on-road tests to predict the driver’s ability to identify vehicle instabilities under excitations such as aerodynamic excitations. A vehicle is fitted with add-ons to create aerodynamic excitations and is driven by multiple drivers on a high-speed track. Drivers’ evaluation, responses, cabin motion, and crosswind conditions are recorded. The influence of yaw and roll rates, lateral acceleration, and steering angle at various frequency ranges when predicting the drivers’ evaluation of induced excitation is demonstrated. The drivers’ evaluation of vehicle behavior is influenced by driver-vehicle interactions.
X