Refine Your Search


Search Results


Cooling Airflow System Modeling in CFD Using Assumption of Stationary Flow

Today CFD is an important tool for engineers in the automotive industry who model and simulate fluid flow. For the complex field of Underhood Thermal Management, CFD has become a very important tool to engineer the cooling airflow process in the engine bay of vehicles. Presenter Peter Gullberg, Chalmers University of Technology
Technical Paper

Axial Fan Performance Predictions in CFD, Comparison of MRF and Sliding Mesh with Experiments

Underhood Thermal Management has become an important topic for the majority of automotive OEM's. To keep combustion engines cool and manage waste heat efficiently is an important part in the design of vehicles with low fuel consumption. To be able to predict cooling performance and underhood airflow with good precision within a virtual design process, it is of utmost importance to model and simulate the cooling fan efficiently and accurately, and this has turned out to be challenging. Simulating the cooling fan in a vehicle installation involves capturing complex fluid dynamic interaction between rotating blades and stationary objects in the vicinity of the fan. This interaction is a function of fan rotation rate, fan blade profile, upstream and downstream installation components. The flow is usually highly turbulent and small geometry details, like the distance between the blade tip and the fan shroud, have strong impact on the fan performance characteristics.
Technical Paper

Cooling Airflow System Modeling in CFD Using Assumption of Stationary Flow

Today CFD is an important tool for engineers in the automotive industry who model and simulate fluid flow. For the complex field of Underhood Thermal Management, CFD has become a very important tool to engineer the cooling airflow process in the engine bay of vehicles. To model the cooling airflow process accurately in CFD, it is of utmost importance to model all components in the cooling airflow path accurately. These components are the heat exchangers, fan and engine bay blockage effect. This paper presents CFD simulations together with correlating measurements of a cooling airflow system placed in a test rig. The system contains a heavy duty truck louvered fin radiator core, fan shroud, fan ring and fan. Behind the cooling module and fan, a 1D engine silhouette is placed to mimic the blockage done by a truck engine. Furthermore, a simple hood is mounted over the module to mimic the guiding of air done by the hood shape in an engine bay.
Technical Paper

A 1D Method for Transient Simulations of Cooling Systems with Non-Uniform Temperature and Flow Boundaries Extracted from a 3D CFD Solution

The current work investigates a method in 1D modeling of cooling systems including discretized cooling package with non-uniform boundary conditions. In a stacked cooling package the heat transfer through each heat exchanger depends on the mass flows and temperature fields. These are a result of complex three-dimensional phenomena, which take place in the under-hood and are highly non-uniform. A typical approach in 1D simulations is to assume these to be uniform, which reduces the authenticity of the simulation and calls for additional calibrations, normally done with input from test measurements. The presented work employs 3D CFD simulations of complete vehicle in STAR-CCM+ to perform a comprehensive study of mass-flow and thermal distribution over the inlet of the cooling package of a Volvo FM commercial vehicle in several steady-state operating points.
Technical Paper

Development of a Model Scale Heat Exchanger for Wind Tunnel Models of Road Vehicles

During the development of the aerodynamic properties of fore coming road vehicles down scaled models are often used in the initial phase. However, if scale models are to be utilised even further in the aerodynamic development they have to include geometrical representatives of most of the components found in the real vehicle. As the cooling package is one of the biggest single generators of aerodynamic drag the heat exchangers are essential to include in a wind tunnel model. However, due mainly to limitations in manufacturing techniques it is complicated to make a down scaled heat exchanger and instead functional dummy heat exchangers have to be developed for scaled wind tunnel models. In this work a Computational Fluid Dynamics (CFD) code has been used to show that it is important that the simplified heat exchanger model has to be of comparable size to that of the full scale unit.
Journal Article

Estimation of Cylinder-Wise Combustion Features from Engine Speed and Cylinder Pressure

Advanced engine control and diagnosis strategies for internal combustion engines need accurate feedback information from the combustion engine. The feedback information can be utilized to control combustion features which allow the improvement of engine's efficiency through real-time control and diagnosis of the combustion process. This article describes a new method for combustion phase and IMEP estimation using one in-cylinder pressure and engine speed. In order to take torsional deflections of the crankshaft into account a gray-box model of the crankshaft is identified by subspace identification. The modeling accuracy is compared to a stiff physical crankshaft model. For combustion feature estimation, the identified MISO (multiple input single output) system is inverted. Experiments for a four-cylinder spark-ignition engine show the superior performance of the new method for combustion feature estimation compared to a stiff model approach.
Journal Article

An Evaluation of Different Combustion Strategies for SI Engines in a Multi-Mode Combustion Engine

Future pressures to reduce the fuel consumption of passenger cars may require the exploitation of alternative combustion strategies for gasoline engines to replace, or use in combination with the conventional stoichiometric spark ignition (SSI) strategy. Possible options include homogeneous lean charge spark ignition (HLCSI), stratified charge spark ignition (SCSI) and homogeneous charge compression ignition (HCCI), all of which are intended to reduce pumping and thermal losses. In the work presented here four different combustion strategies were evaluated using the same engine: SSI, HLCSI, SCSI and HCCI. HLCSI was achieved by early injection and operating the engine lean, close to its stability limits. SCSI was achieved using the spray-guided technique with a centrally placed multi-hole injector and spark-plug. HCCI was achieved using a negative valve overlap to trap hot residuals and thus generate auto-ignition temperatures at the end of the compression stroke.
Technical Paper

A Numerical and Experimental Study of Diesel Fuel Sprays Impinging on a Temperature Controlled Wall

Both spray-wall and spray-spray interactions in direct injection diesel engines have been found to influence the rate of heat release and the formation of emissions. Simulations of these phenomena for diesel sprays need to be validated, and an issue is investigating what kind of fuels can be used in both experiments and spray calculations. The objective of this work is to compare numerical simulations with experimental data of sprays impinging on a temperature controlled wall with respect to spray characteristics and heat transfer. The numerical simulations were made using the STAR-CD and KIVA-3V codes. The CFD simulations accounted for the actual spray chamber geometry and operating conditions used in the experiments. Particular attention was paid to the fuel used for the simulations.
Technical Paper

Numerical and Experimental Analysis of the Wall Film Thickness for Diesel Fuel Sprays Impinging on a Temperature-Controlled Wall

Analysis of spray-wall interaction is a major issue in the study of the combustion process in DI diesel engines. Along with spray characteristics, the investigation of impinging sprays and of liquid wall film development is fundamental for predicting the mixture formation. Simulations of these phenomena for diesel sprays need to be validated and improved; nevertheless they can extend and complement experimental measurements. In this paper the wall film thickness for impinging sprays was investigated by evaluating the heat transfer across a temperature controlled wall. In fact, heat transfer is significantly affected by the wall film thickness, and both experiments and simulations were carried out to correlate the wall temperature variations and film height. The numerical simulations were carried out using the STAR-CD and the KIVA-3V, rel. 2, codes.
Technical Paper

Spark Assisted HCCI Combustion Using a Stratified Hydrogen Charge

Future requirements for emission reduction from combustion engines in ground vehicles might be met by using the HCCI combustion concept. In this concept a more or less homogenous air fuel mixture is compressed to auto ignition. This gives good fuel consumption compared to a normal SI engine and its ability to burn lean mixtures at low temperatures has a positive impact on exhaust emissions. However, there are challenges associated with this concept, for instance its limited operating range and combustion control. The objective of this work is to investigate a hybrid concept, based on a combination of HCCI combustion of n-heptane and SI combustion of hydrogen. The basic idea is to initiate HCCI combustion with a spark ignited stratified lean hydrogen mixture. To verify that the combustion sequence consists of flame front combustion followed by HCCI combustion, photographs of OH chemiluminescence from the combustion were taken.
Journal Article

Time and Spatially Resolved Temperature Measurements of a Combusting Diesel Spray Impinging on a Wall

The interaction between a combusting diesel spray and a wall was studied by measuring the spray flame temperature time and spatially resolved. The influence of injection sequences, injection pressure and gas conditions on the heat transfer between the combusting spray and the wall was investigated by measuring the flame temperature during the complete injection event. The flame temperature was measured by an emission based optical method and determined by comparing the relative emission intensities from the soot in the flame at two wavelength intervals. The measurements were done by employing a monochromatic and non intensified high speed camera, an array of mirrors, interference filters and a beam splitter. The studies were carried out in the Chalmers High Pressure High Temperature (HP/HT) spray rig at conditions similar to those prevailing in a direct injected diesel engine prior to the injection of fuel.
Technical Paper

An Experimental Investigation of Spray-Wall Interaction of Diesel Sprays

Wall wetting can occur irrespective of combustion concept in diesel engines, e.g. during the compression stroke. This action has been related to engine-out emissions in different ways, and an experimental investigation of impinging diesel sprays is thus made for a standard diesel fuel and a two-component model fuel (IDEA). The experiment was performed at conditions corresponding to those found during the compression stroke in a heavy duty diesel engine. The spray characteristics of two fuels were measured using two different optical methods: a Phase Doppler Particle Analyzer (PDPA) and high-speed imaging. A temperature controlled wall equipped with rapid, coaxial thermocouples was used to record the change in surface temperature from the heat transfer of the impinging sprays.
Technical Paper

Randomness of Flame Kernel Development in Turbulent Gas Mixture

An expanding cylindrical laminar flame kernel affected by random external strain rates and diffusivity is numerically simulated in order to gain insight into the influence of small-scale turbulence on the combustion variability in engines. In the simulations, the kernel is strained, as a whole, by external velocity gradients randomly generated with either Gaussian or log-normal probability density functions. The influence of small-scale turbulent heat and mass transfer is modeled by turbulent diffusivity, the randomness of which is controlled by the fluctuations in the viscous dissipation averaged over the kernel volume. The computed results show that small-scale phenomena can substantially affect the quenching characteristics of a small flame kernel and the kernel growth history rj(t); the scatter of the computed curves of rf(t) being mainly controlled by the scatter of the duration of the initial stage of kernel development.
Technical Paper

Influence of Wall Properties on the Characteristics of a Gasoline Spray After Wall Impingement

Interest in spray-wall interactions has grown because of the development of direct-injection stratified-charge (DISC) spark ignition (SI) engines. In this type of engine, impingement of the spray on the piston wall often leads to high emissions of unburned hydrocarbons and soot. These emissions have proven to be one of the major drawbacks of the DISC SI engine, so it is important to obtain detailed knowledge about the different processes involved in spray impingement and their effects. In this study, the size and velocity of droplets reflected from a wall were characterized by Phase Doppler Anemometry (PDA). The impinging spray was also visualized using an AVL VisioScope. The experiments were carried out on a real gasoline spray impinging on a wall under simulated engine conditions in a spray chamber. A sensitivity analysis was carried out to investigate the influence of different wall properties and wall temperature, on the impingement and secondary atomization processes.
Technical Paper

Gasoline HCCI Modeling: An Engine Cycle Simulation Code with a Multi-Zone Combustion Model

For the application to Gasoline Homogenous Charge Compression Ignition (HCCI) modeling, a multi-zone model was developed. For this purpose, the detailed-chemistry code SENKIN from the CHEMKIN library was modified. In a previous paper, the authors explained how piston motion and a heat transfer model were implemented in the SENKIN code to make it applicable to engine modeling. The single-zone model developed was successfully implemented in the engine cycle simulation code AVL BOOST™. A multi-zone model, including a crevice volume, a quench layer and multiple core zones, is introduced here. A temperature distribution specified over these zones gives this model a wider range of application than the single-zone model, since fuel efficiency, emissions and heat release can now be predicted more accurately. The SENKIN-BOOST multi-zone model predictions are compared with experimental data.
Technical Paper

Simulations of Fuel/Air Mixing, Combustion, and Pollutant Formation in a Direct Injection Gasoline Engine

Simulations of a Direct Injection Spark Ignition (DISI) engine have been performed for both early injection with homogeneous charge combustion and for late injection with stratified charge combustion. The purpose has been to study flow characteristics, fuel/air mixing, combustion, and NOx and soot formation. Focus is put on the combustion modeling. Two different full load cases with early injection are simulated, 2000 rpm and 6000 rpm. One load point with late injection is simulated, 2000 rpm and 2.8 bar net MEP. Three different injection timings are simulated at the low load point: 77, 82, and 87 CAD bTDC. The spray simulations are tuned to match measured spray penetrations and droplet size distributions at both atmospheric and elevated pressure. Boundary conditions for the engine simulations are taken from 1-D gas exchange simulations that are tuned to match engine tests.
Technical Paper

A Simple Model of Unsteady Turbulent Flame Propagation

A model of premixed turbulent combustion is modified for multi-dimensional computations of SI engines. This approach is based on the use of turbulent flame speed in order to suggest a closed balance equation for the mean combustion progress variable. The model includes a single unknown input parameter to be tuned. This model is tested against two sets of experimental data obtained by Bradley et al [17, 18 and 19] and Karpov and Severin [15] in fan-stirred bombs. The model quantitatively predicts the development of the turbulent flame speed, the effects of the initial pressure, temperature, and mixture composition on the turbulent flame speed, and the effects of r.m.s. turbulent velocity and burning mixture composition on the rate of the pressure rise. These results were computed with the same value of the aforementioned unknown input parameter of the model.
Technical Paper

Heat Release in the End-Gas Prior to Knock in Lean, Rich and Stoichiometric Mixtures With and Without EGR

SI Engine knock is caused by autoignition in the unburnt part of the mixture (end-gas) ahead of the propagating flame. Autoignition of the end-gas occurs when the temperature and pressure exceeds a critical limit when comparatively slow reactions-releasing moderate amounts of heat-transform into ignition and rapid heat release. In this paper the difference in the heat released in the end-gas-by low temperature chemistry-between lean, rich, stochiometric, and stoichiometric mixtures diluted with cooled EGR was examined by measuring the temperature in the end-gas with Dual Broadband Rotational CARS. The measured temperature history was compared with an isentropic temperature calculated from the cylinder pressure trace. The experimentally obtained values for knock onset were compared with results from a two-zone thermodynamic model including detailed chemistry modeling of the end-gas reactions.
Technical Paper

The Effect of Knock on Heat Transfer in SI Engines

Heat transfer to the walls of the combustion chamber is increased by engine knock. In this study the influence of knock onset and knock intensity on the heat flux is investigated by examining over 10 000 individual engine cycles with a varying degree of knock. The heat transfer to the walls was estimated by measuring the combustion chamber wall temperature in an SI engine under knocking conditions. The influence of the air-fuel ratio and the orientation of the oscillating cylinder pressure-relative to the combustion chamber wall-were also investigated. It was found that knock intensities above 0.2 Mpa influenced the heat flux. At knock intensities above 0.6 Mpa, the peak heat flux was 2.5 times higher than for a non-knocking cycle. The direction of the oscillations did not affect the heat transfer.
Technical Paper

Temperature Oscillations in the Wall of a Cooled Multi Pulsejet Propeller for Aeronautic Propulsion

Environmental and economic issues related to the aeronautic transport, with particular reference to the high-speed one are opening new perspectives to pulsejets and derived pulse detonation engines. Their importance relates to high thrust to weight ratio and low cost of manufacturing with very low energy efficiency. This papers presents a preliminary evaluation in the direction of a new family of pulsejets which can be coupled with both an air compression system which is currently in pre-patenting study and a more efficient and enduring valve systems with respect to today ones. This new pulsejet has bee specifically studied to reach three objectives: a better thermodynamic efficiency, a substantial reduction of vibrations by a multi-chamber cooled architecture, a much longer operative life by more affordable valves. Another objective of this research connects directly to the possibility of feeding the pulsejet with hydrogen.