Refine Your Search

Topic

Search Results

Viewing 1 to 15 of 15
Technical Paper

Dodge Ram Pickup Vehicle: From Human Factors Development to Production Intent Metal Assembly

1993-11-01
932988
To evaluate and refine interior architecture of the new Dodge Ram pickup truck three years before production, a road worthy interior package validation buck was built using a fiberglass body shell. Molds for the shell were made using CAD/CAM techniques. Advanced CAD/CAM techniques were used to build the interior buck of a subsequent model from individual panels molded in carbon fiber. This buck also included inner structural panels and interior trim components taken from CAD data. For this and subsequent new vehicle programs, refinement of construction techniques allows the bucks to serve as aids in product design and manufacturing feasibility studies.
Technical Paper

Chrysler 8.0-Liter V-10 Engine

1993-11-01
933033
Chrysler Corporation has developed an 8.0-liter engine for light truck applications. Numerous features combine to produce the highest power and torque ratings of any gasoline-fueled light truck engine currently available while also providing commensurate durability. These features include: a deep-skirt ten-cylinder 90° “V” block, a Helmholtz resonator intake manifold that enhances both low and mid-range torque, light die cast all-aluminum pistons for low vibration, a unique firing order for smooth operation, a “Y” block configuration for strength and durability, a heavy duty truck-type thermostat to control warm up, and a direct ignition system.
Technical Paper

Body-in-White Prototype Process in Chrysler's Jeep/Truck Platform

1993-11-01
933038
Chrysler Corporation's Jeep and Truck platform implemented a new design and prototype process for the body-in -white of a new pickup truck. A team approach achieved concurrent body design, stamping die design, assembly process development, and assembly tooling development. The first domestic US industry use of a 100% electronic design and release system was instrumental in the process. The new process produced a prototype body-in-white on time at 95 WBVP (weeks before volume production) with the highest level of production-intent components ever achieved within Chrysler at this stage of development.
Technical Paper

Inadvertent Air Bag Sensor Testing for Off-Road Vehicles

1993-11-01
933020
This paper presents the development of a test procedure for evaluation of inadvertent deployment of air bags. The methodology and early development of the procedure is discussed along with additional criteria thought to be required for trucks and sport utility vehicles. Tests conducted address severe off-road use in relation to air bag sensing systems. Data is collected from accelerometers. After worst case test conditions are identified (examples include rough road, snow plowing and jerk towing events), the data is analyzed and comparisons for design decisions can be made.
Technical Paper

Experimental and Computer Simulation Analysis of Transients on an Automobile Communication Bus

1995-02-01
950038
Voltage and current surges are a major concern when it comes to ensuring the functional integrity of electrical and electronic components and modules in an automobile system. This paper presents a computer simulation study for analyzing the effect of high voltage spikes and current load dump on a new Integrated Driver/Receiver (IDR) IC, currently being developed for a J1850 Data Communication Bus in an automobile. It describes the modeling and simulation of the protection structure proposed for the device. The simulation study yields a prediction of current and voltage capability of the protection circuit based on thermal breakdown and transient responses of the circuit. Two levels of modeling, namely, the behavioral level model and the component level model, are used to generate the simulation results. Experimental data will be acquired and used to validate the simulation model when the actual device becomes available.
Technical Paper

Using Life Cycle Management to Evaluate Lead-Free Electrocoat‡

1997-02-24
970696
Environmental costs are a delayed financial burden that result from product decisions made early in the product life cycle--early material choices may create regulatory and waste management costs that were not factored into the acquisition cost. This paper outlines a step-wise approach to determine decision points; environmental, health, safety and recycling (EHS&R) cost drivers that affect decisions; and sources of information required to conduct a Life Cycle Management (LCM) review. Additionally, how LCM fits into the larger concurrent engineering framework is illustrated with an electrocoat primer example. Upstream and downstream supply chain processes are reviewed, as well as organizational challenges that affect the decision process.
Technical Paper

Comparison of Energy Management Materials for Head Impact Protection

1997-02-24
970159
Energy management materials are widely used in automotive interiors in instrument panel, knee bolster, and door absorber applications to reduce the risk of injury to an occupant during a crash. Automobile manufacturers must meet standards set by the National Highway Traffic Safety Administration (NHTSA) that identify maximum levels of injury to an occupant. The recent NHTSA upgrade to the Federal Motor Vehicle Safety Standard (FMVSS) 201 test procedure(1) for upper interior head impact protection has prompted energy management materials' use in several new areas of affected vehicles. While vehicle evaluations continue, results to date show that energy management foams can be effective in reducing the head injury criterion [HIC(d)] to acceptable government and OEM levels.
Technical Paper

Chrysler Evaporation Control System The Vapor Saver for 1970

1970-02-01
700150
A system for controlling gasoline evaporation losses from 1970 model Chrysler Corp. cars and light trucks was developed, certified for sale in California, and put into production. Evaporation losses from both the carburetor and the fuel tank are conducted to the engine crankcase for storage while the engine is shut down. The vapors are removed from the crankcase and utilized in the combustion process during subsequent vehicle operation. Particularly interesting in this unique, no-moving parts system, are the reliability and durability, and the vapor-liquid separator “standpipe.”
Technical Paper

A Procedure for Measuring Instrument Panel Visibility

1972-02-01
720232
A procedure has been developed for measuring the relative visibility of automotive instrument panel graphics and components. Through use of a Luckiesh-Moss Visibility Meter, discreet values of visibility can be assigned to visual targets and related to driver reaction time. Also, eyes off the road lapsed time boundaries may be established which will define visibility requirements necessary to serve the total driver population. These requirements can be translated into meaningful guidelines or standards for visibility attributes such as size, shape, color, contrast, and position of graphics, controls, and indicators. How visibility measurements are made and interpreted and the visibility measuring facility are discussed in this paper.
Technical Paper

TRUCK PERFORMANCE— Computed versus Measured Data

1958-01-01
580040
THIS paper outlines tests made to verify the SAE recommended practice for estimating truck ability performance described in TR-82. The author has collected data on four vehicles and compares it with the results computed in TR-82 and with a Method X. The data includes information on air and rolling resistance, effect of wind velocity, chassis friction power, grade ability, and the like. The author concludes that the SAE method of TR-82 is at the present time the most reliable method for computing truck ability.
Technical Paper

Rating Transmissions from Highway Requirements and Vehicle Specifications

1960-01-01
600009
THE GRADEABILITY formula can be used as the basic means for rating a truck transmission. By correlating the gradeabilities in the various gear ratios with a highway requirement probability curve, the per cent of time in each ratio can be obtained. The required hours of gear life for each ratio are then determined, and compared with the available gear life in the ratios. This procedure gives a detailed analysis of a transmission rating for one vehicle specification at a specified mileage between overhauls. A limitation of the system is that it cannot be applied quickly to various vehicle specifications. The paper outlines the method for constructing a nomogram to overcome this.*
Technical Paper

Predicting ROAD PERFORMANCE of Commercial Vehicles

1950-01-01
500172
A SIMPLE method of predicting truck performance in terms of grade ability at a given road speed, taking into consideration rolling resistance, air resistance, and chassis friction is presented here. A brief review of fundamental considerations is given first, then the method recommended for predicting vehicle ability at a selected speed, and finally a few words on the prediction of maximum possible road speed and selection of gear ratios. The basis of the solution is the determination and expression of vehicle resistances in terms of horsepower - that is, in terms of forces acting at a velocity. A convenient method of solving the grade problem at a given speed is by means of a tabular computation sheet, which is given, together with tables and charts. These assist in making the computation an easy one as well as giving the necessary data on vehicle resistances.
Technical Paper

How Seat Design Characteristics Affect Impact Injury Criteria

1986-03-01
860638
The seat can play an important part in improving occupant safety during a car impact. This paper discusses research done to determine how characteristics of seat design affect occupant safety. Impact simulator tests have been run which determine how variation of five specific seat characteristics affect FMVSS 208 occupant injury criteria. These tests simulated a 48.3 km/h (30 mi/h) frontal Oarrier impact using a 50th percentile male anthropomorphic device restrained by a two-point passive shoulder belt system. The five seat characteristics tested were the following: 1) Seat Frame Angle, 2) Seat Frame Structure, 3) H-Point Distance Above the Seat Frame, 4) Energy Absorption of the Seat Frame, and 5) Seat Cushion Foam Firmness. Test results show that the first characteristic can improve all injury criteria. The other four will improve some injury criteria at the expense of others.
Technical Paper

Energy-Absorbing Polyurethane Foam to Improve Vehicle Crashworthiness

1995-02-01
950553
Federal legislation mandates that automotive OEMS provide occupant protection in collisions involving front and side impacts This legislation, which is to be phased-in over several years, covers not only passenger cars but also light-duty trucks and multipurpose passenger vehicles (MPVs) having a gross vehicle weigh rating (GVWR) of 8,500 lb (3,850 kg) or less. During a frontal impact, occupants within the vehicle undergo rapid changes in velocity. This is primarily due to rapid vehicle deceleration caused by the rigid nature of the vehicle's metal frame components and body assembly. Many of today's vehicles incorporate deformable, energy-absorbing (EA) structures within the vehicle structure to manage the collision energy and slow the deceleration which in turn can lower the occupant velocity relative to the vehicle. Occupant velocities can be higher in light-duty trucks and MPVs having a full-frame structure resulting in increased demands on the supplemental restraint system (SRS).
X