Refine Your Search

Search Results

Viewing 1 to 8 of 8
Technical Paper

Achieving Dent Resistance Improvements and Weight Reduction Through Stamping Process Optimization and Steel Substitution

1996-02-01
960025
Resistance to dents and dings, caused by plant handling and in-service use, is generally recognized as an important performance requirement for automotive outer body panels. This paper examines the dent resistance improvements that can be achieved by maximizing surface stretch, through adjustments to the press settings, and substitution of a higher strength steel grade. Initially, the stamping process was optimized using the steel supplied for production: a Ti/Nb-stabilized, ultra low carbon (ULC) grade. The stamping process was subsequently optimized with a Nb-stabilized, rephosphorized ULC steel, at various thicknesses. The formed panels were evaluated for percent surface stretch, percent thinning, in-panel yield strength after forming, and dent performance. The results showed that dent resistance can be significantly improved, even at a reduced steel thickness, thus demonstrating a potential for weight savings.
Technical Paper

Springback Prediction in Sheet Forming Simulation

1994-03-01
940937
Although numerical simulation techniques for sheet metal forming become increasingly maturing in recent years, prediction of springback remains a topic of current investigation. The main point of this paper is to illustrate the effectiveness of a modelling approach where static implicit schemes are used for the prediction of springback regardless whether a static implicit or dynamic explicit scheme is used in the forming simulation. The approach is demonstrated by revisiting the 2-D draw bending of NUMISHEET'93 and numerical results on two real world stampings.
Technical Paper

Body-in-White Prototype Process in Chrysler's Jeep/Truck Platform

1993-11-01
933038
Chrysler Corporation's Jeep and Truck platform implemented a new design and prototype process for the body-in -white of a new pickup truck. A team approach achieved concurrent body design, stamping die design, assembly process development, and assembly tooling development. The first domestic US industry use of a 100% electronic design and release system was instrumental in the process. The new process produced a prototype body-in-white on time at 95 WBVP (weeks before volume production) with the highest level of production-intent components ever achieved within Chrysler at this stage of development.
Technical Paper

RTM Body Panels for Viper Sports Car

1993-03-01
930468
Resin transfer molding (RTM) is the process of choice for the Body Panels of the Viper Sports car. The objective of this paper is to outline the reasons for the choice of RTM, and discuss development of technology for Class A surfaces and the paint system. Accomplishments to date and finally the work yet to be completed will also be defined. Conclusions from the work to date indicate that the RTM process enables a reduction in vehicle development time through faster prototypes and tool build times and that high quality, Class A surfaces can be successfully achieved even with epoxy tools. Additional work is ongoing to reduce cycle times and finishing costs, and to improve the in-process dimensional stability.
Technical Paper

Brake and Clutch Pedal System Optimization Using Design for Manufacture and Assembly

1992-02-01
920774
This paper describes the application of the Design for Manufacture and Assembly (DFMA) method at Chrysler. Attention is focused on the development of the clutch and brake pedal and bracketry system of the PL project in the Small Car Platform. The Chrysler DFMA procedure including competitive evaluation and value engineering was utilized during the initial design phase involving product concept development from the original functional and manufacturing requirements. After the first laboratory tests, a number of key design and manufacturing concerns surfaced and led to a second cycle of DFMA analysis. The procedure permits major design functions and manufacturing and assembly process issues and criteria to be incorporated in the initial design stages.
Technical Paper

A New Method of Predicting the Formability of Materials

1972-02-01
720019
The paper presents a new method, based on standard laboratory cup tests, for predicting the formability of materials; in the example provided, the forming potentials of four new materials are shown. The properties of stretchability and drawability, which are the principal factors defining a material's forming limits, may be assessed using the Olsen spherical cup test and the Swift flat-bottomed cup test. In the shape analysis procedure described, the minimum amount of deformation needed to fix a desired shape is determined. Then necessary adjustments to tooling for optimum sheet metal usage are made based on calculations from a new type of chart showing stretch forming ratio and draw forming ratio, providing a comparison of the formabilities of a number of materials.
Technical Paper

Optimizing Press Performance for Difficult Automotive Stampings

1986-02-01
860440
A method has been employed in the stamping facility to reduce scrap by correlating observations from the press shop with laboratory test results. This paper illustrates the successful use of this method for reducing formability failures. Correlation of observed coating behavior with laboratory adherence tests is also discussed.
Technical Paper

Application of Strain Analysis to Sheet Metal Forming Problems in the Press Shop

1968-02-01
680093
Strain analysis of stampings is explained. The system is based on the strain distributions obtained from 0.2 in. inter-locking circle grid patterns etched on blanks. The strain distributions are related to a developed formability limit curve and the mechanical properties of the gridded blank. The evaluation of the graphic relation of the strains to the formability limit enables the press shop to determine what factors should be changed to produce stampings with less scrap and lower cost.
X