Refine Your Search

Search Results

Viewing 1 to 9 of 9
Technical Paper

Exterior Body Panels - Present Manufacturing Implementation and Future Directions and Needs

1992-02-01
920372
Advances in computerized solid modeling techniques allow the realistic representation of exterior body panels as solid models, at the concept stage of part design. A flow chart of the process is presented on the use of solid models to create exterior body panels. The flow chart allows a study of the process and is extended to the next generation of capabilities.
Technical Paper

Improvements in the Dent Resistance of Steel Body Panels

1992-02-01
920243
A computer-controlled body panel testing machine has been used to quantify stiffness and dent resistance of body panels at Chrysler. The influence of yield strength and local reinforcement on the mechanical behavior of automotive door panels has been investigated. Medium strength steels in the range of 210 -240 MPa yield strength have produced significant improvements in dent resistance over a 160 MPa yield strength steel. Considerable improvements in dent resistance can also be attributed to the use of local, adhesively attached, glass fiber reinforcement patches. The effects of boundary conditions and panel shape on stiffness and dent resistance are illustrated in this application.
Technical Paper

RTM Body Panels for Viper Sports Car

1993-03-01
930468
Resin transfer molding (RTM) is the process of choice for the Body Panels of the Viper Sports car. The objective of this paper is to outline the reasons for the choice of RTM, and discuss development of technology for Class A surfaces and the paint system. Accomplishments to date and finally the work yet to be completed will also be defined. Conclusions from the work to date indicate that the RTM process enables a reduction in vehicle development time through faster prototypes and tool build times and that high quality, Class A surfaces can be successfully achieved even with epoxy tools. Additional work is ongoing to reduce cycle times and finishing costs, and to improve the in-process dimensional stability.
Technical Paper

Body-in-White Prototype Process in Chrysler's Jeep/Truck Platform

1993-11-01
933038
Chrysler Corporation's Jeep and Truck platform implemented a new design and prototype process for the body-in -white of a new pickup truck. A team approach achieved concurrent body design, stamping die design, assembly process development, and assembly tooling development. The first domestic US industry use of a 100% electronic design and release system was instrumental in the process. The new process produced a prototype body-in-white on time at 95 WBVP (weeks before volume production) with the highest level of production-intent components ever achieved within Chrysler at this stage of development.
Technical Paper

Achieving Dent Resistance Improvements and Weight Reduction Through Stamping Process Optimization and Steel Substitution

1996-02-01
960025
Resistance to dents and dings, caused by plant handling and in-service use, is generally recognized as an important performance requirement for automotive outer body panels. This paper examines the dent resistance improvements that can be achieved by maximizing surface stretch, through adjustments to the press settings, and substitution of a higher strength steel grade. Initially, the stamping process was optimized using the steel supplied for production: a Ti/Nb-stabilized, ultra low carbon (ULC) grade. The stamping process was subsequently optimized with a Nb-stabilized, rephosphorized ULC steel, at various thicknesses. The formed panels were evaluated for percent surface stretch, percent thinning, in-panel yield strength after forming, and dent performance. The results showed that dent resistance can be significantly improved, even at a reduced steel thickness, thus demonstrating a potential for weight savings.
Technical Paper

Static and Dynamic Dent Resistance Performance of Automotive Steel Body Panels

1997-02-24
970158
In recent years, strict weight reduction targets have pushed auto manufacturers to use lighter gauge sheet steels in all areas of the vehicle including exterior body panels. As sheet metal thicknesses are reduced, dentability of body panels becomes of increasing concern. Thus, the goal becomes one of reducing sheet metal thickness while maintaining acceptable dent resistance. Most prior work in this area has focused on quasi-static loading conditions. In this study, both quasi-static and dynamic dent tests are evaluated. Fully assembled doors made from mild, medium strength bake hardenable and non-bake hardenable steels are examined. The quasi-static dent test is run at a test speed of 0.1 m/minute while the dynamic dent test is run at a test speed of 26.8 m/minute. Dynamic dent testing is of interest because it more closely approximates real life denting conditions such as in-plant handling and transit damage, and parking lot damage from car door and shopping cart impact.
Technical Paper

Design Criteria for the Dent Resistance of Auto Body Panels

1974-02-01
740081
One solution to the problem of spiraling automotive weights is the substitution of thinner high strength steels or thicker aluminum alloy outer body panels. In doing so the dent resistance of these panels must not be sacrificed. This study investigates the dent resistance of doubly curved rectangular panels in various steels and aluminum alloys. Dent depth on the order of magnitude of the panel thickness was studied. An empirical equation is developed that relates dent resistance to the yield strengths, metal thickness, and panel geometry.
Technical Paper

Application of Strain Analysis to Sheet Metal Forming Problems in the Press Shop

1968-02-01
680093
Strain analysis of stampings is explained. The system is based on the strain distributions obtained from 0.2 in. inter-locking circle grid patterns etched on blanks. The strain distributions are related to a developed formability limit curve and the mechanical properties of the gridded blank. The evaluation of the graphic relation of the strains to the formability limit enables the press shop to determine what factors should be changed to produce stampings with less scrap and lower cost.
Technical Paper

Optimizing Press Performance for Difficult Automotive Stampings

1986-02-01
860440
A method has been employed in the stamping facility to reduce scrap by correlating observations from the press shop with laboratory test results. This paper illustrates the successful use of this method for reducing formability failures. Correlation of observed coating behavior with laboratory adherence tests is also discussed.
X