Refine Your Search

Search Results

Viewing 1 to 3 of 3
Journal Article

Design for Six Sigma (DFSS) for Optimization of Automotive Heat Exchanger and Underhood Air Temperature

2014-04-01
2014-01-0729
In this paper a design methodology for automotive heat exchangers has been applied which brings robustness into the design process and helps to optimize the design goals: as to maintain an optimal coolant temperature and to limit the vehicle underhood air temperature within a tolerable limit. The most influential design factors for the heat exchangers which affect the goals have been identified with that process. The paper summarizes the optimization steps necessary to meet the optimal functional goals for the vehicle as mentioned above. Taguchi's [1] Design for Six Sigma (DFSS) methods have been employed to conduct this analysis in a robust way.
Journal Article

Transient Thermal Analysis of Diesel Fuel Systems

2012-04-16
2012-01-1049
In this paper, a transient thermal analysis model for Diesel fuel systems is presented. The purpose of this work is to determine the fuel temperature at various locations along the system, especially inside the tank and at the returned fuel inlet to the tank. Due to the fact that the fuel level is continuously changing during any driving condition, the fuel mass inside the tank is also continuously changing. Consequently, the fuel temperature will change even under steady driving or idle conditions, therefore, this problem should be analyzed using transient thermal analysis models. Effective thermal management requires controlling the surface temperature of the fuel tank, fuel lines and the fuel temperature at the fuel return line as well as inside the tank [1, 2]. Based on the thermal analysis results, it is possible to determine the major source of heat input at several locations of the fuel system.
Technical Paper

Sensitivity and Uncertainty Analysis in Computational Thermal Models

2014-04-01
2014-01-0656
Computational tools have been extensively applied to predict component temperatures before an actual vehicle is built for testing [1, 2, 3, 4, and 5]. This approach provides an estimate of component temperatures during a specific driving condition. The predicted component temperature is compared against acceptable temperature limits. If violations of the temperature limits are predicted, corrective actions will be applied. These corrective actions may include adding heat shields to the heat source or to the receiving components. Therefore, design changes are implemented based on the simulation results. Sensitivity analysis is the formal technique of determining most influential parameters in a system that affects its performance. Uncertainty analysis is the process of evaluating the deviation of the design from its intended design target.
X