Refine Your Search

Topic

Search Results

Technical Paper

Determination of Vehicle Resistance Curve in Engine Cooling System Design

2010-04-12
2010-01-0933
A process to create a vehicle resistance curve based on airflow predictions using Computational Fluid Dynamics (CFD) simulation technique is presented. 1-dimensional engine cooling system simulation tool KULI is used to compute the coefficients of vehicle resistance curve. A full factorial Design of Experiment (DOE) established the relationship between the coefficients and the sum of absolute difference between KULI and CFD predictions. The NLPQL optimization routine is used to accurately predict the coefficients so that sum of absolute difference between KULI and CFD predictions is minimized.
Technical Paper

Developing the AC17 Efficiency Test for Mobile Air Conditioners

2013-04-08
2013-01-0569
Chrysler, Ford, General Motors, the U.S. Environmental Protection Agency (EPA) and the California Air Resources Board (CARB) have collaborated over the past two years to develop an efficiency test for mobile air conditioner (MAC) systems. Because the effect of efficiency differences between different MAC systems and different technologies is relatively small compared to overall vehicle fuel consumption, quantifying these differences has been challenging. The objective of this program was to develop a single dynamic test procedure that is capable of discerning small efficiency differences, and is generally representative of mobile air conditioner usage in the United States. The test was designed to be conducted in existing test facilities, using existing equipment, and within a sufficiently short time to fit standard test facility scheduling. Representative ambient climate conditions for the U.S. were chosen, as well as other test parameters, and a solar load was included.
Technical Paper

An Application of Ant Colony Optimization to Energy Efficient Routing for Electric Vehicles

2013-04-08
2013-01-0337
With the increased market share of electric vehicles, the demand for energy-efficient routing algorithms specifically optimized for electric vehicles has increased. Traditional routing algorithms are focused on optimizing the shortest distance or the shortest time in finding a path from point A to point B. These traditional methods have been working well for fossil fueled vehicles. Electric vehicles, on the other hand, require different route optimization techniques. Negative edge costs, battery power limits, battery capacity limits, and vehicle parameters that are only available at query time, make the task of electric vehicle routing a challenging problem. In this paper, we present an ant colony based, energy-efficient routing algorithm that is optimized and designed for electric vehicles. Simulation results show improvements in the energy consumption of electric vehicles when applied to a start-to-destination routing problem.
Technical Paper

Shape Recovery Simulation of Flexible Airdam

2013-04-08
2013-01-0166
Airdam is an aerodynamic component in automobile and is designed to reduce the drag and increase fuel efficiency. It is also an important styling component. The front airdam below the bumper is to direct the air flow away from the front tires and towards the underbody, where the drag coefficient becomes less. The flexible airdam is made of Santoprene™ - thermoplastic vulcanizates (TPV), which belongs to thermoplastic elastomer (TPE) family. When a vehicle is parked over a parking block, the flexible airdam will be under strain subjected to bending load from the parking block. If the airdam is kept under constant strain for a certain period, a set will occur and the force will decay over a period of time. Due to the force decay, the stress will reduce and this behavior is called as stress relaxation.
Technical Paper

Charge Capacity Versus Charge Time in CC-CV and Pulse Charging of Li-Ion Batteries

2013-04-08
2013-01-1546
Due to their high energy density and low self-discharge rates, lithium-ion batteries are becoming the favored solution for portable electronic devices and electric vehicles. Lithium-Ion batteries require special charging methods that must conform to the battery cells' power limits. Many different charging methods are currently used, some of these methods yield shorter charging times while others yield more charge capacity. This paper compares the constant-current constant-voltage charging method against the time pulsed charging method. Charge capacity, charge time, and cell temperature variations are contrasted. The results allow designers to choose between these two methods and select their parameters to meet the charging needs of various applications.
Technical Paper

DC Charging and Standards for Plug-in Electric Vehicles

2013-04-08
2013-01-1475
This paper is the fourth in the series of documents designed to identify the progress on the SAE Plug-in Electric Vehicle (PEV) communication task force. - The initial paper (2010-01-0837) introduced utility communications (J2836/1™ & J2847/1) and how the SAE task force interfaced with other organizations. - The second paper (2011-01-0866) focused on the next steps of the utility requirements and added DC charging (J2836/2™ & J2847/2) along with initial effort for Reverse Power Flow (J2836/3™ & J2847/3). - The third paper (2012-01-1036) summarized the task force documents and interaction. It also included the continued testing of PowerLine Carrier (PLC) products for Utility and DC charging messages using Electric Power Research Institutes (EPRI) test plan and schedule that were used at EPRI and Argonne National Labs (ANL).
Technical Paper

Techniques for Contact Considerations in Fatigue Life Estimations of Automotive Structures

2013-04-08
2013-01-1201
Contacts or interactions commonly exist between adjacent components in automotive structures, and most of the time they dominate stress status of the components. However, when the routine pseudo stress approach is employed in fatigue life estimations, simulating contacts present special challenges. This may result in coarse stress status and corresponding coarser fatigue life estimations at the contact locations. In this paper, concept, development and procedures of two techniques to consider contacts in fatigue life estimations of automotive structures are described in detail. One is still pseudo stress approach based, but employs additional 1-D connection elements to simulate contacts. The other is nonlinear stress approach based, but equivalent constantly repeating cyclic critical load cases are introduced and utilized. The contacts are simulated by interface setup provided in the software.
Technical Paper

Communication Requirements for Plug-In Electric Vehicles

2011-04-12
2011-01-0866
This paper is the second in the series of documents designed to record the progress of a series of SAE documents - SAE J2836™, J2847, J2931, & J2953 - within the Plug-In Electric Vehicle (PEV) Communication Task Force. This follows the initial paper number 2010-01-0837, and continues with the test and modeling of the various PLC types for utility programs described in J2836/1™ & J2847/1. This also extends the communication to an off-board charger, described in J2836/2™ & J2847/2 and includes reverse energy flow described in J2836/3™ and J2847/3. The initial versions of J2836/1™ and J2847/1 were published early 2010. J2847/1 has now been re-opened to include updates from comments from the National Institute of Standards Technology (NIST) Smart Grid Interoperability Panel (SGIP), Smart Grid Architectural Committee (SGAC) and Cyber Security Working Group committee (SCWG).
Technical Paper

CFD Analysis of Various Automotive Bodies in Linear Static Pressure Gradients

2012-04-16
2012-01-0298
Establishing data adjustments that will give an interference free result for bluff bodies in automotive wind tunnels has been pursued for at least the last 45 years. Recently, the Two-Measurement correction method that yields a wake distortion adjustment for open jet wind tunnels has shown promise of being able to adjust for many of the effects of non-ideal static pressure gradients on bluff automotive bodies. Utilization of this adjustment has shown that a consistent drag results when the vehicle is subjected to the various gradients generated in open jet wind tunnels. What has been lacking is whether this consistent result is independent of the other tunnel interference effects. The studies presented here are intended to fill that gap on the performance of the two-measurement technique. The subject CFD studies are designed to eliminate all wind tunnel interference effects except for the variation of the (linear) static pressure gradient.
Technical Paper

Crash Test Pulses for Advanced Batteries

2012-04-16
2012-01-0548
This paper reports a 2010 study undertaken to determine generic acceleration pulses for testing and evaluating advanced batteries for application in electric passenger vehicles. These were based on characterizing vehicle acceleration time histories from standard laboratory vehicle crash tests. Crash tested passenger vehicles in the United States vehicle fleet of the model years 2005-2009 were used. The crash test data were gathered from the following test modes and sources: 1 Frontal rigid flat barrier test at 35 mph (NHTSA NCAP) 2 Frontal 40% offset deformable barrier test at 40 mph (IIHS) 3 Side moving deformable barrier test at 38 mph (NHTSA side NCAP) 4 Side oblique pole test at 20 mph (US FMVSS 214/NHTSA side NCAP) 5 Rear 70% offset moving deformable barrier impact at 50 mph (US FMVSS 301). The accelerometers used were from locations in the vehicle where deformation is minor or non-existent, so that the acceleration represents the “rigid-body” motion of the vehicle.
Technical Paper

Further CFD Studies for Detailed Tires using Aerodynamics Simulation with Rolling Road Conditions

2010-04-12
2010-01-0756
In an environment of tougher engineering constraints to deliver tomorrow's aerodynamic vehicles, evaluation of aerodynamics early in the design process using digital prototypes and simulation tools has become more crucial for meeting cost and performance targets. Engineering needs have increased the demands on simulation software to provide robust solutions under a range of operating conditions and with detailed geometry representation. In this paper the application of simulation tools to wheel design in on-road operating conditions is explored. Typically, wheel and wheel cover design is investigated using physical tests very late in the development process, and requires costly testing of many sets of wheels in an on-road testing environment (either coast-down testing or a moving-ground wind-tunnel).
Technical Paper

A Mesoscopic-Stress Based Fatigue Limit Theory - A Revised Dang Van's Model

2014-04-01
2014-01-0902
Dang Van (Dang Van et al., 1982 and Dang Van, 1993) states that for an infinite lifetime (near fatigue limit), crack nucleation in slip bands may occur at the most unfavorable oriented grains, which are subject to plastic deformation even if the macroscopic stress is elastic. Since the residual stresses in these plastically deformed grains are induced by the restraining effect of the adjacent grains, it is assumed that the residual stresses are stabilized at a mesoscopic level. These stresses are currently approximated by the macroscopic hydrostatic stress defined by the normal stresses to the faces of an octahedral element oriented with the faces symmetric to the principal axis; mathematically they are equal to each other and they are the average of the principal stresses.
Technical Paper

Non-Linear Modeling of Bushings and Cab Mounts for Calculation of Durability Loads

2014-04-01
2014-01-0880
Cab mounts and suspension bushings are crucial for ride and handling characteristics and must be durable under highly variable loading. Such elastomeric bushings exhibit non-linear behavior, depending on excitation frequency, amplitude and the level of preload. To calculate realistic loads for durability analysis of cars and trucks multi-body simulation (MBS) software is used, but standard bushing models for MBS neglect the amplitude dependent characteristics of elastomers and therefore lead to a trade-off in simulation accuracy. On the other hand, some non-linear model approaches lack an easy to use parameter identification process or need too much input data from experiments. Others exhibit severe drawbacks in computing time, accuracy or even numerical stability under realistic transient or superimposed sinusoidal excitation.
Technical Paper

Energy Efficient Routing for Electric Vehicles using Particle Swarm Optimization

2014-04-01
2014-01-1815
Growing concerns about the environment, energy dependency, and unstable fuel prices have increased the market share of electric vehicles. This has led to an increased demand for energy efficient routing algorithms that are optimized for electric vehicles. Traditional routing algorithms are focused on finding the shortest distance or the least time route between two points. These approaches have been working well for fossil fueled vehicles. Electric vehicles, on the other hand, require different route optimization techniques. Negative edge costs, battery power and capacity limits, as well as vehicle parameters that are only available at query time, make the task of electric vehicle routing a challenging problem. In this paper, we present a simulated solution to the energy efficient routing for electric vehicles using Particle Swarm Optimization. Simulation results show improvements in the energy consumption of the electric vehicle when applied to a start-to-destination routing problem.
Technical Paper

CFD Analysis of Automotive Bodies in Static Pressure Gradients

2014-04-01
2014-01-0612
Recently, the Two-Measurement correction method that yields a wake distortion adjustment for open jet wind tunnels has shown promise of being able to adjust for many of the effects of non-ideal static pressure gradients on bluff automotive bodies. Utilization of this adjustment has shown that a consistent drag results when the vehicle is subjected to the various gradients generated in open jet wind tunnels. What has been lacking is whether this consistent result is independent of the other tunnel interference effects. The studies presented here are intended to fill that gap and add more realistic model and wind tunnel conditions to the evaluations of the performance of the two-measurement technique. The subject CFD studies are designed to greatly reduce all wind tunnel interference effects except for the variation of the non-linear static pressure gradients. A zero gradient condition is generated by simulating a solid wall test section with a blockage ratio of 0.1%.
Technical Paper

Simplified Approach of Chassis Frame Optimization for Durability Performance

2014-04-01
2014-01-0399
In recent trend, there is a huge demand for lightweight chassis frame, which improves fuel efficiency and reduces cost of the vehicle. Stiffness based optimization process is simple and straightforward while durability (life) based optimizations are relatively complex, time consuming due to a two-step (Stress then life) virtual engineering process and complicated loading history. However, durability performances are critical in chassis design, so a process of optimization with simplified approach has been developed. This study talks about the process of chassis frame weight optimization without affecting current durability performance where complex durability load cases are converted to equivalent static loadcases and life targets are cascaded down to simple stress target. Sheet metal gauges and lightening holes are the parameters for optimization studies. The optimization design space is constrained to chassis unique parts.
Journal Article

Optimizing Electric Vehicle Battery Life through Battery Thermal Management

2011-04-12
2011-01-1370
In order to define and to optimize a thermal management system for a high voltage vehicular battery, it is essential to understand the environmental factors acting on the battery and their influence on battery life. This paper defines a calendar life aging model for a battery, and applies real world environmental and operating conditions to that model. Charge and usage scenarios are combined with various cooling/heating approaches. This set of scenarios is then applied to the calendar life model, permitting optimization of battery thermal management strategies. Real-world battery life can therefore be maximized, and trade-offs for grid energy conversion efficiency and fuel economy/vehicle range can be determined.
Journal Article

Combined Variation Modeling of Structural and Tuning Components for Vehicle Performance Assessment

2013-04-08
2013-01-0944
During the vehicle development process, dimensional variation simulation modeling has been applied extensively to estimate the effects of build variation on the final product. Traditional variation simulation methods analyze the tolerance inputs of structural components, but do not account for any compliance effects due to stiffness variation in tuning components, such as bushings, springs, isolators, etc., since both product and process variation are simulated based on rigid-body assumptions. Vehicle performance objectives such as ride and handling (R&H) often involve these compliance metrics. The objective of this paper is to present a method to concurrently simulate the tolerance from the structural parts as well as the variability of compliance from the tuning components through an integration package. The combination of these two highly influential effects will allow for a more accurate prediction and assessment of vehicle performance.
Journal Article

Rainflow Counting Based Block Cycle Development for Fatigue Analysis using Nonlinear Stress Approach

2013-04-08
2013-01-1206
An accurate representation of proving ground loading is essential for nonlinear Finite Element analysis and component fatigue test. In this paper, a rainflow counting based multiple blocks loading development procedure is described. The procedure includes: (1) Rainflow counting analysis to obtain the relationship between load range and cumulative repeats and the statistical relationship between load range and mean load; (2) Formation of preliminary multiple loading blocks with specified load range, mean load, and the approximate cycle repeats, and construction of the preliminary multiple loading blocks; (3) Calibration and finalization of the repeats for preliminary multiple loading blocks according to the equivalent damage rule, meaning that the damage value due to the block loads is equivalent to that from a PG loading.
Journal Article

Effects of Vehicle Mass and Other Parameters on Driver Relative Fatality Risk in Vehicle-Vehicle Crashes

2013-04-08
2013-01-0466
Regression models are used to understand the relative fatality risk for drivers in front-front and front-left crashes. The field accident data used for the regressions were extracted by NHTSA from the FARS database for model years 2000-2007 vehicles in calendar years 2002-2008. Multiple logistic regressions are structured and carried out to model a log-linear relationship between risk ratio and the independent vehicle and driver parameters. For front-front crashes, the regression identifies mass ratio, belt use, and driver age as statistically significant parameters (p-values less than 1%) associated with the risk ratio. The vehicle type and presence of the ESC are found to be related with less statistical significance (p-values between 1% and 5%). For front-left crashes the driver risk ratio is also found to have a log-log linear relationship with vehicle mass ratio.
X