Refine Your Search

Search Results

Viewing 1 to 4 of 4
Technical Paper

Determination of Vehicle Resistance Curve in Engine Cooling System Design

A process to create a vehicle resistance curve based on airflow predictions using Computational Fluid Dynamics (CFD) simulation technique is presented. 1-dimensional engine cooling system simulation tool KULI is used to compute the coefficients of vehicle resistance curve. A full factorial Design of Experiment (DOE) established the relationship between the coefficients and the sum of absolute difference between KULI and CFD predictions. The NLPQL optimization routine is used to accurately predict the coefficients so that sum of absolute difference between KULI and CFD predictions is minimized.
Technical Paper

Prediction of HVAC System Aero/Acoustic Noise Generation and Propagation using CFD

With the advent of quieter powertrain and improved cabin acoustic sealing, there is an increased focus on noise generated in the HVAC unit and climate control ducting system. With improved insulation from exterior noise sources such as wind & road noise, HVAC noise is more perceptible by the occupants and is a key quality indicator for new generation vehicles. This has increased the use of simulations tools to predict HVAC noise during the virtual development phase of new vehicle programs. With packaging space being premium under the instrument panel, changes to address noise issues are expensive and often impractical. The current methodology includes the best practices in simulation accumulated from prior aero acoustics validation studies on fans, ducts, flaps and plenum volume discharge. The paper details the acoustic noise generation and propagation in the near field downstream of an automotive HVAC unit in conjunction with ducting system.
Technical Paper

Passenger Vehicle Hybrid Hydraulic Powertrain Sound Quality Investigation

The sound quality of a prototype series hydraulic hybrid passenger vehicle powertrain was analyzed. Different sound quality metrics were evaluated to determine which one correlated best with the subjective assessment of sound quality, and a desired sound quality target was developed. Next, the effect of the design of the hydraulic powertrain components on sound quality was analyzed. Two extreme options were analyzed: “stiff” systems with a hard drive shaft or short fluid hoses, and “soft” systems with a soft drive shaft or long fluid hoses. Experimental results from these systems are presented in the paper. Finally, design recommendations were made to achieve the best sound quality of the hybrid hydraulic powertrain, and therefore maximum customer satisfaction.
Journal Article

Design for Six Sigma (DFSS) for Optimization of Automotive Heat Exchanger and Underhood Air Temperature

In this paper a design methodology for automotive heat exchangers has been applied which brings robustness into the design process and helps to optimize the design goals: as to maintain an optimal coolant temperature and to limit the vehicle underhood air temperature within a tolerable limit. The most influential design factors for the heat exchangers which affect the goals have been identified with that process. The paper summarizes the optimization steps necessary to meet the optimal functional goals for the vehicle as mentioned above. Taguchi's [1] Design for Six Sigma (DFSS) methods have been employed to conduct this analysis in a robust way.