Refine Your Search

Search Results

Viewing 1 to 5 of 5
Technical Paper

Austempering Process for Carburized Low Alloy Steels

2013-04-08
2013-01-0949
There is a continual need to apply heat treatment processes in innovative ways to optimize material performance. One such application studied in this research is carburizing followed by austempering of low carbon alloy steels, AISI 8620, AISI 8822 and AISI 4320, to produce components with high strength and toughness. This heat treatment process was applied in two steps; first, carburization of the surface of the parts, second, the samples were quenched from austenitic temperature at a rate fast enough to avoid the formation of ferrite or pearlite and then held at a temperature just above the martensite starting temperature to partially or fully form bainite. Any austenite which was not transformed during austempering, upon further cooling formed martensite or was present as retained austenite.
Technical Paper

Developing Generic Load Cases by Defining Maximum Spindle Loads as a Function of Corner Weight & Tire Sidewall Height

2013-04-08
2013-01-1435
Generic spindle loads are used in the upfront analysis for vehicle durability development. They represent different load case into the vehicle suspension system, such as potholes, cornering, and braking. The advantage of using these generic load cases is that they can be used upfront in the durability development process before hardware is available. The generic spindle loads are cascaded through the suspension system to generate component loads which can then be used for stress analysis. The paper describes a study that was done to determine the validity of current generic spindle loads by analyzing spindle data from multiple vehicles in the same class. The paper will explain the initial data analysis that was done, which was normalizing the spindle loads by weight. In addition, the paper will then go into further detail on describing a relationship between spindle loads and tire sidewall height, which reduced the load scatter.
Technical Paper

Simplified Approach of Chassis Frame Optimization for Durability Performance

2014-04-01
2014-01-0399
In recent trend, there is a huge demand for lightweight chassis frame, which improves fuel efficiency and reduces cost of the vehicle. Stiffness based optimization process is simple and straightforward while durability (life) based optimizations are relatively complex, time consuming due to a two-step (Stress then life) virtual engineering process and complicated loading history. However, durability performances are critical in chassis design, so a process of optimization with simplified approach has been developed. This study talks about the process of chassis frame weight optimization without affecting current durability performance where complex durability load cases are converted to equivalent static loadcases and life targets are cascaded down to simple stress target. Sheet metal gauges and lightening holes are the parameters for optimization studies. The optimization design space is constrained to chassis unique parts.
Journal Article

Comparison of Austempering and Quench-and-Tempering Processes for Carburized Automotive Steels

2013-04-08
2013-01-0173
Carburized parts often see use in powertrain components for the automotive industry. These parts are commonly quenched and tempered after the carburizing process. The present study compared the austempering heat treatment to the traditional quench-and-temper process for carburized parts. Samples were produced from SAE 8620, 4320, and 8822 steels and heat treated across a range of conditions for austempering and for quench-and-tempering. Distortion was examined through the use of Navy C-Ring samples. Microstructure, hardness, and Charpy toughness were also examined. X-ray diffraction was used to compare the residual stress found in the case of the components after the quench-and-temper and the austempering heat treatments. Austempering samples showed less distortion and higher compressive residual stresses, while maintaining comparable hardness values in both case and core. Toughness measurements were also comparable between both processes.
Journal Article

Estimation of One-Sided Lower Tolerance Limits for a Weibull Distribution Using the Monte Carlo Pivotal Simulation Technique

2013-04-08
2013-01-0329
This paper introduces a methodology to calculate confidence bounds for a normal and Weibull distribution using Monte Carlo pivotal statistics. As an example, a ready-to-use lookup table to calculate one-sided lower confidence bounds is established and demonstrated for normal and Weibull distributions. The concept of one-sided lower tolerance limits for a normal distribution was first introduced by G. J. Lieberman in 1958 (later modified by Link in 1985 and Wei in 2012), and has been widely used in the automotive industry because of the easy-to-use lookup tables. Monte Carlo simulation methods presented here are more accurate as they eliminate assumptions and approximations inherent in existing approaches by using random experiments. This developed methodology can be used to generate confidence bounds for any parametric distribution. The ready-to-use table for the one-sided lower tolerance limits for a Weibull distribution is presented.
X