Refine Your Search

Topic

Author

Affiliation

Search Results

Journal Article

What's Speed Got To Do With It?

2010-04-12
2010-01-0526
The statistical analysis of vehicle crash accident data is generally problematic. Data from commonly used sources is almost never without error and complete. Consequently, many analyses are contaminated with modeling and system identification errors. In some cases the effect of influential factors such as crash severity (the most significant component being speed) driver behavior prior to the crash, etc. on vehicle and occupant outcome is not adequately addressed. The speed that the vehicle is traveling at the initiation of a crash is a significant contributor to occupant risk. Not incorporating it may make an accident analysis irrelevant; however, despite its importance this information is not included in many of the commonly used crash data bases, such as the Fatality Analysis Reporting System (FARS). Missing speed information can result in potential errors propagating throughout the analysis, unless a method is developed to account for the missing information.
Journal Article

Modeling and Analysis of Powertrain NVH with Focus on Growl Noise

2013-05-13
2013-01-1875
Superior NVH performance is a key focus in the development of new powertrains. In recent years, computer simulations have gained an increasing role in the design, development, and optimization of powertrain NVH at component and system levels. This paper presents the results of a study carried out on a 4-cylinder in-line spark-ignition engine with focus on growl noise. Growl is a low frequency noise (300-700 Hz) which is primarily perceived at moderate engine speeds (2000-3000 rpm) and light to moderate throttle tip-ins. For this purpose, a coupled and fully flexible multi-body dynamics model of the powertrain was developed. Structural components were reduced using component mode synthesis and used to determine dynamics loads at various engine speeds and loading conditions. A comparative NVH assessment of various crankshaft designs, engine configurations, and in- cylinder gas pressures was carried out.
Journal Article

Design for Six Sigma (DFSS) for Optimization of Automotive Heat Exchanger and Underhood Air Temperature

2014-04-01
2014-01-0729
In this paper a design methodology for automotive heat exchangers has been applied which brings robustness into the design process and helps to optimize the design goals: as to maintain an optimal coolant temperature and to limit the vehicle underhood air temperature within a tolerable limit. The most influential design factors for the heat exchangers which affect the goals have been identified with that process. The paper summarizes the optimization steps necessary to meet the optimal functional goals for the vehicle as mentioned above. Taguchi's [1] Design for Six Sigma (DFSS) methods have been employed to conduct this analysis in a robust way.
Journal Article

Development of Transient Thermal Models Based on Theoretical Analysis and Vehicle Test Data

2014-04-01
2014-01-0726
In this paper, thermal models are developed based on experimental test data, and the physics of thermal systems. If experimental data is available, the data can be fitted to mathematical models that represent the system response to changes in its input parameters. Therefore, empirical models which are based on test data are developed. The concept of time constant is presented and applied to development of transient models. Mathematical models for component temperature changes during transient vehicle driving conditions are also presented. Mathematical models for climate control system warm up and cool-down are also discussed. The results show the significance of adopting this concept in analysis of vehicle test data, and in development of analytical models. The developed models can be applied to simulate the system or component response to variety of changes in input parameters. As a result, significant testing and simulation time can be saved during the vehicle development process.
Journal Article

Optimization of a Porous Ducted Air Induction System Using Taguchi's Parameter Design Method

2014-04-01
2014-01-0887
Taguchi method is a technology to prevent quality problems at early stages of product development and product design. Parameter design method is an important part in Taguchi method which selects the best control factor level combination for the optimization of the robustness of product function against noise factors. The air induction system (AIS) provides clean air to the engine for combustion. The noise radiated from the inlet of the AIS can be of significant importance in reducing vehicle interior noise and tuning the interior sound quality. The porous duct has been introduced into the AIS to reduce the snorkel noise. It helps with both the system layout and isolation by reducing transmitted vibration. A CAE simulation procedure has been developed and validated to predict the snorkel noise of the porous ducted AIS. In this paper, Taguchi's parameter design method was utilized to optimize a porous duct design in an AIS to achieve the best snorkel noise performance.
Journal Article

Thermal Map of an IC Engine via Conjugate Heat Transfer: Validation and Test Data Correlation

2014-04-01
2014-01-1180
Accurate numerical prediction of an engine thermal map at a wide range of engine operating conditions can help tune engine performance parameters at an early development stage. This study documents the correlation of an engine thermal simulation using the conjugate heat transfer (CHT) methodology with thermocouple data from an engine operating in a dynamometer and a vehicle drive cell. Three different operating conditions are matched with the simulation data. Temperatures predicted by simulation at specific sections, both at the intake and the exhaust sides of the engine are compared with the measured temperatures in the same location on the operating engine.
Journal Article

Eulerian CFD Modeling of Coupled Nozzle Flow and Spray with Validation Against X-Ray Radiography Data

2014-04-01
2014-01-1425
This paper implements a coupled approach to integrate the internal nozzle flow and the ensuing fuel spray using a Volume-of-Fluid (VOF) method in the CONVERGE CFD software. A VOF method was used to model the internal nozzle two-phase flow with a cavitation description closed by the homogeneous relaxation model of Bilicki and Kestin [1]. An Eulerian single velocity field approach by Vallet et al. [2] was implemented for near-nozzle spray modeling. This Eulerian approach considers the liquid and gas phases as a complex mixture with a highly variable density to describe near nozzle dense sprays. The mean density is obtained from the Favreaveraged liquid mass fraction. The liquid mass fraction is transported with a model for the turbulent liquid diffusion flux into the gas.
Journal Article

Numerical Simulations of Supersonic Diesel Spray Injection and the Induced Shock Waves

2014-04-01
2014-01-1423
Shock waves have been recently observed in high-pressure diesel sprays. In this paper, three-dimensional numerical simulations of supersonic diesel spray injection have been performed to investigate the underlying dynamics of the induced shock waves and their interactions with the spray. A Volume-of-Fluid based method in the CFD software (CONVERGE) is used to model this multiphase phenomena. An adaptive Mesh Refinement (AMR) scheme is employed to capture the front of the spray and the shock waves with high fidelity. Simulation results are compared to the available experimental observations to validate the numerical procedure. Parametric studies with different injection and ambient conditions are conducted to examine the effect of these factors on the generation of shock waves and their dynamics.
Journal Article

CFD-Guided Heavy Duty Mixing-Controlled Combustion System Optimization with a Gasoline-Like Fuel

2017-03-28
2017-01-0550
A computational fluid dynamics (CFD) guided combustion system optimization was conducted for a heavy-duty compression-ignition engine with a gasoline-like fuel that has an anti-knock index (AKI) of 58. The primary goal was to design an optimized combustion system utilizing the high volatility and low sooting tendency of the fuel for improved fuel efficiency with minimal hardware modifications to the engine. The CFD model predictions were first validated against experimental results generated using the stock engine hardware. A comprehensive design of experiments (DoE) study was performed at different operating conditions on a world-leading supercomputer, MIRA at Argonne National Laboratory, to accelerate the development of an optimized fuel-efficiency focused design while maintaining the engine-out NOx and soot emissions levels of the baseline production engine.
Journal Article

A Machine Learning-Genetic Algorithm (ML-GA) Approach for Rapid Optimization Using High-Performance Computing

2018-04-03
2018-01-0190
A Machine Learning-Genetic Algorithm (ML-GA) approach was developed to virtually discover optimum designs using training data generated from multi-dimensional simulations. Machine learning (ML) presents a pathway to transform complex physical processes that occur in a combustion engine into compact informational processes. In the present work, a total of over 2000 sector-mesh computational fluid dynamics (CFD) simulations of a heavy-duty engine were performed. These were run concurrently on a supercomputer to reduce overall turnaround time. The engine being optimized was run on a low-octane (RON70) gasoline fuel under partially premixed compression ignition (PPCI) mode. A total of nine input parameters were varied, and the CFD simulation cases were generated by randomly sampling points from this nine-dimensional input space. These input parameters included fuel injection strategy, injector design, and various in-cylinder flow and thermodynamic conditions at intake valve closure (IVC).
Journal Article

Numerical Investigation of Two-Phase Flow Evolution of In- and Near-Nozzle Regions of a Gasoline Direct Injection Engine During Needle Transients

2016-04-05
2016-01-0870
This work involves modeling internal and near-nozzle flows of a gasoline direct injection (GDI) nozzle. The Engine Combustion Network (ECN) Spray G condition has been considered for these simulations using the nominal geometry of the Spray G injector. First, best practices for numerical simulation of the two-phase flow evolution inside and the near-nozzle regions of the Spray G injector are presented for the peak needle lift. The mass flow rate prediction for peak needle lift was in reasonable agreement with experimental data available in the ECN database. Liquid plume targeting angle and liquid penetration estimates showed promising agreement with experimental observations. The capability to assess the influence of different thermodynamic conditions on the two-phase flow nature was established by predicting non-flashing and flashing phenomena.
Technical Paper

Investigation of Reynolds Stress Model for Complex Flow Using CONVERGE

2020-04-14
2020-01-1104
The Reynolds stress turbulence model (RSM) has been developed to go beyond the Boussinesq hypothesis and to improve turbulence modeling of flows with significant mean streamline curvature and secondary flow. In this paper the RSM in commercial CFD software CONVERGE is tested for its performance and robustness when applying to complex flows. Several validation cases including flow over flat plate, vortex combustor, diesel engine spray and combustion were selected to test the RSM. The swirling flow in vortex combustor, non-reacting but vaporizing ECN Spray A (free jet) and Sandia small bore diesel engine case are used to demonstrate the benefits of the RSM over the widely used RNG k-epsilon model without model tuning. The vortex combustor case shows the RSM can provide good prediction for strong swirling flow. ECN spray A case was used to demonstrate that the RSM can accurately predict the liquid and vapor penetration lengths of a free jet under diesel engine conditions.
Journal Article

Real Time Virtual Temperature Sensor for Transmission Clutches

2011-04-12
2011-01-1230
Many experiments have demonstrated that clutch overheating is a major cause of clutch deterioration. Clutch friction material deterioration not only leads to clutch failure, but also causes poor shift quality. Unfortunately, it is not practical to monitor each individual clutch temperature in a production vehicle due to high costs or technical challenges. This paper introduces a proposal for a virtual clutch temperature sensor to monitor the real time clutch temperature changes in Chrysler transmissions with PWM solenoid based control systems. Both vehicle and laboratory dynamometer (dyno) tests demonstrate that the model results match very closely with the thermocouple temperature measurements under many different driving conditions. The real time virtual temperature sensor provides a tool for clutch surface overheat protection and for design improvement and enhancement to shift quality.
Journal Article

Optimizing Electric Vehicle Battery Life through Battery Thermal Management

2011-04-12
2011-01-1370
In order to define and to optimize a thermal management system for a high voltage vehicular battery, it is essential to understand the environmental factors acting on the battery and their influence on battery life. This paper defines a calendar life aging model for a battery, and applies real world environmental and operating conditions to that model. Charge and usage scenarios are combined with various cooling/heating approaches. This set of scenarios is then applied to the calendar life model, permitting optimization of battery thermal management strategies. Real-world battery life can therefore be maximized, and trade-offs for grid energy conversion efficiency and fuel economy/vehicle range can be determined.
Journal Article

Investigation of LEV-III Aftertreatment Designs

2011-04-12
2011-01-0301
Proposed LEV-III emission level will require improvements in NMOG, CO and NOx emissions as measured over FTP and US06 emission cycles. Incremental improvements in washcoat technologies, cold start calibration and catalyst system design are required to develop a cost effective solution set. New catalyst technologies demonstrated both lower HC and NOx emissions with 25% less platinum group metals (PGM). FTP and US06 emissions were measured on a 4-cylinder 2.4L application which compares a close-coupled converter and close-coupled + underfloor converter systems. A PGM placement study was performed with the close-coupled converter system employing these new catalyst technologies. Emissions results suggest that the placement of PGM is critical in minimizing emissions and PGM costs.
Journal Article

A Study of Parking Brake Cable Efficiency as Affected by Construction Type

2011-09-18
2011-01-2380
This paper studies the effects of various types of parking brake cable construction on parking brake system efficiency. Testing was conducted on a variety of common cable constructions from several industry sources. Cable construction variables include different types of conduit and wire strand. Input travel, input force, output travel, and output force were carefully measured under controlled conditions. Force, travel and hence work efficiencies were calculated and analyzed to identify any differences that might exist under the defined test conditions. Conclusions were drawn that might provide direction for improving parking brake system designs that have performance issues caused by poor cable efficiency.
Journal Article

Estimation of Individual Cylinder Fuel Air Ratios from a Switching or Wide Range Oxygen Sensor for Engine Control and On-Board Diagnosis

2011-04-12
2011-01-0710
The fuel air ratio imbalance between individual cylinders can result in poor fuel economy and severe exhaust emissions. Individual cylinder fuel air ratio control is one of the important techniques used to improve fuel economy and reduce exhaust emission. California Air Resources Board (CARB) also has required automotive manufacturers to equip with on-board diagnosis system for cylinder fuel air ratio imbalance detection starting in 2011. However, one of the most challenging tasks for the individual cylinder fuel air ratio control and cylinder imbalance diagnosis is how to retrieve the cylinder fuel air ratio information effectively at low cost. This paper presents a novel and practical signal processing based fuel air ratio estimation method for individual cylinder fuel air ratio balance control and on-board fuel air ratio imbalance diagnosis.
Journal Article

Rotating Clutch Temperature Model Development Using Rapid Prototype Controllers

2012-04-16
2012-01-0625
Due to the multitude of external design constraints, such as increasing fuel economy standards, and the increasing number of global vehicle programs, developers of automotive transmission controls have to cope with increasing levels of powertrain system complexity. Achieving these requirements while improving system quality, reducing development cost and improving time to market is a very challenging task. To achieve this goal, a rapid prototype controller was used to develop a new transmission clutch temperature model. This model is used to detect clutch surface overheating, improve design and enhance shift quality.
Journal Article

A Fatigue Life Estimation Technique for Body Mount Joints

2012-04-16
2012-01-0733
A body mount joint is a typical clamped joint that is under severe loading conditions, due to its structural function services as a gateway of load path between body and frame of an automotive vehicle. Stresses/strains on durability concerned components at the joint cannot be captured accurately by using the pseudo stress analysis approach because of the complexity of stress state generated by the pre-stress from clamp load, contacts between the components and nonlinear material properties. In this paper, development of a technique for fatigue life estimation of the joint is described in detail.
Journal Article

Assessing Dirlik's Fatigue Damage Estimation Method for Automotive Applications

2012-04-16
2012-01-0757
Fatigue analysis in the time domain using the rainflow cycle counting algorithm is considered the most accurate method for estimating damage. Dirlik's method has been found to be very accurate for damage estimation in the frequency domain. Previous studies have demonstrated the usefulness of Dirlik's method for ocean engineering and wind turbines but few have shown how well Dirlik performs in automotive applications. This study compares Dirlik's method with the rainflow cycle counting and with other frequency domain methods. The study analyzes measured data for an automotive component subjected to five test track load conditions. In addition, fourteen of Dirlik's original spectra and seven additional spectra which combine sine and random spectra are studied. It was found that Dirlik's method predicts more damage than the rainflow cycle counting method when applied to the original data used in creating the method.
X