Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Analysis Method for the Design of Compensated Pitot-Static Probes for Use on General Aviation Aircraft

1995-05-01
951431
Pitot-static probes are used on aircraft to measure total and static pressure, necessary for airspeed and altitude information. Aerodynamic compensation is often desired to obtain accurate freestream static pressure readings when the instrument is located near regions of disturbed flow generated by the aircraft's forebody. In this study, computational fluid dynamics (CFD) has been used to analyze surface pressures on the forebody, the probe, and on forebody/probe configurations for a transonic business jet. Compensation techniques and validation cases are presented. Results indicate that CFD can be effective in locating static pressure ports in a region of zero pressure coefficients (Cp).
Technical Paper

Multidisciplinary Design and Prototype Development of a Very Small Remotely-Piloted Reconnaissance Airplane

1997-10-01
975547
The multidisciplinary design optimization (MDO) methodology is employed for the design of a very small remotely-piloted airplane for a reconnaissance mission. The airplane configuration established at the conceptual design level is optimized for minimum size subject to performance, stability, weight, and dimension constraints. The constrained optimization problem is solved using the extended interior penalty function method based on finite-difference approximations of the sensitivity derivatives. The MDO-based design is validated both analytically and through the development and flight testing of a prototype airplane.
Technical Paper

Rough Terrain Vehicle with Synchronized Transmission-A Student Design Project

1978-02-01
780243
A Rough Terrain Vehicle has been designed, constructed and tested by Mechanical Engineering Students for the Mini-Baja 77 Races. This one seat vehicle has an eight horsepower engine, five speed transmission, independent front wheel suspension and disc brake. The gear train has been matched to the engine performance curves. A wooden mockup was used to establish the man-machine interface. The design and construction of this vehicle was the assigned problem in “Mechanical Engineering Practice”. This paper presents the design of this vehicle and then comments on the effectiveness of this project in achieving the objectives of this course.
Technical Paper

Development of A Dynamic Modeling Framework to Predict Instantaneous Status of Towing Vehicle Systems

2017-03-28
2017-01-1588
A dynamic modeling framework was established to predict status (position, displacement, velocity, acceleration, and shape) of a towed vehicle system with different driver inputs. This framework consists of three components: (1) a state space model to decide position and velocity for the vehicle system based on Newton’s second law; (2) an angular acceleration transferring model, which leads to a hypothesis that the each towed unit follows the same path as the towing vehicle; and (3) a polygon model to draw instantaneous polygons to envelop the entire system at any time point. Input parameters of this model include initial conditions of the system, real-time locations of a reference point (e.g. front center of the towing vehicle) that can be determined from a beacon and radar system, and instantaneous accelerations of this system, which come from driver maneuvers (accelerating, braking, steering, etc.) can be read from a data acquisition system installed on the towing vehicle.
Technical Paper

A 1200-V 600-A Silicon-Carbide Half-Bridge Power Module for Drop-In Replacement of an IGBT IPM

2010-04-12
2010-01-1251
A 1200-V, 600-A silicon carbide (SiC) JFET half-bridge module has been developed for drop-in replacement of a 600-V, 600-A IGBT intelligent power module (IPM). Advances in the development of SiC field effect transistors have resulted in reliable high yield devices that can be paralleled and packaged to produce high-voltage and high-current power modules not only competitive with existing IGBT technology but the modules have expanded capabilities. A SiC vertical junction field effect transistor VJFET has been produced with the properties of lower conduction loss, zero tail current, higher thermal conductivity, and higher power density when compared to a similarly rated silicon IGBT or any practical SiC MOSFETs previously reported. Three prototype SiC JFET half-bridge modules with gate drivers have been successfully integrated into a three-phase 30-kW (continuous), 100-kW (intermittent) AC synchronous motor drive designed to control a traction motor in an electric vehicle.
Technical Paper

Optimizing Valve Rotational Speed Using Taguchi Techniques

2010-04-12
2010-01-1096
As fuel economy regulations increase and customer preference shifts to smaller, higher power density engines it is more important to effectively cool certain areas of the cylinder head and valvetrain. In order to maximize valvetrain life and increase engine performance it is critical to maintain a near uniform valve seat temperature to enable proper sealing. As cylinder head bridges narrow, and the temperature increases, the water jacket may not be sufficient. An alternative method to ensuring equal temperature distribution across the valve is to promote low speed valve rotation. This will not only aid, cooling the valve seat, as well as cooling and cleaning the valves' seating surface. This paper describes the development and testing of a valve rotation study, utilizing the Taguchi approach in order to determine the most robust design. A test stand was utilized to examine the valve rotation in which the cam was driven directly using a DC motor.
Technical Paper

The Consequences of Average Curve Generation: Implications for Biomechanics Data

2010-11-03
2010-22-0001
One method of understanding the general mechanical response of a complex system such as a vehicle, a human surrogate, a bridge, a boat, a plane, etc., is to subject it to an input, such as an impact, and obtain the response time-histories. The responses can be accelerations, velocities, strains, etc. In general, when experiments of this type are run the responses are contaminated by sample-to-sample variation, test-to-test variability, random noise, instrumentation noise, and noise from unknown sources. One common method of addressing the noise in the system to obtain the underlying response is to run multiple tests on different samples that represent the same system and add them together obtaining an average. This functionally reduces the random noise. However, if the fundamental response of each sample is not the same, then it is not altogether clear what the average represents. It may not capture the underlying physics.
Technical Paper

Determination of Interior NVH Levels from Tire/Wheel Variations using a Monte Carlo Process

2011-05-17
2011-01-1580
Variability in design (e.g. tolerance), material, manufacturing, or other sources of variation causes significant variation in vehicle noise, vibration and harshness (NVH) response. This leads to a higher percentage of produced vehicles with higher levels of NVH leading to higher number of warranty claims and loss of customer satisfaction, which are proven costly to the original equipment manufacturers (OEM). Measures must be taken to insure less warranty claims and higher levels of customer satisfaction. As a result, original equipment manufacturers have implemented design for variation in the design process to secure an acceptable (or within specification) response. We will focus on some aspects of design variations in a tire/wheel assembly that should be considered in the design process. In particular, certain materials (e.g. rubber) are known to have variation in stiffness that is either unavoidable or proven costly if tighter control is desired.
Technical Paper

Noise Contribution Analysis at Suspension Interfaces Using Different Force Identification Techniques

2011-05-17
2011-01-1600
Road-tire induced vibrations are in many vehicles determining the interior noise levels in (semi-) constant speed driving. The understanding of the noise contributions of different connections of the suspension systems to the vehicle is essential in improvement of the isolation capabilities of the suspension- and body-structure. To identify these noise contributions, both the forces acting at the suspension-to-body connections points and the vibro-acoustic transfers from the connection points to the interior microphones are required. In this paper different approaches to identify the forces are compared for their applicability to road noise analysis. First step for the force identification is the full vehicle operational measurement in which target responses (interior noise) and indicator responses (accelerations or other) are measured.
Technical Paper

Study of Noise of Accessory Belt under Cold Condition

2011-04-12
2011-01-0929
This paper presents an experimental study of automotive V-ribbed belt slip noise under cold condition. In this study, a set of experiments was conducted to investigate the properties of the belt noise and friction using a self developed rig. The belt friction under cold condition is found to have higher value than that in room condition. The belt noise under cold condition is found to have much higher squeal frequency than that in room condition. This study is expected to provide accessory drive designers some fundamental understanding of belt startup noise under cold conditions.
Technical Paper

Time Belt Dynamics and Noise Study

2010-04-12
2010-01-0902
This paper studies the dynamics and noise of timing belt. A comprehensive theoretical contact dynamics model for belt tooth-sprocket tooth pair is developed. The general belt dynamics model in conjunction with the contact model is used to quantify the impact-sliding process of belt tooth. The effect of tooth meshing process is illustrated which results in the vibrations of belt span and tooth vibrations. The structural borne noise consists of structural impact portion and friction-induced portion. The relationship between system parameters and noise is quantified. The air borne noise due to air-pumping is investigated based on Lighthill's equation. A comprehensive model is developed and the spectrum signatures of the air-pumping noise are illustrated.
Technical Paper

Design and Control of Transmission Systems using Physical Model Simulation

2010-04-12
2010-01-0898
Physical modeling has been used by the industry to improve development time and produce a quality product. In this paper, we will describe two methods used in system control to take advantage of the physical model. One method describes a complete transmission physical model with a full system control utilizing co-simulation techniques. Data will be presented, and comparison to vehicle data will be conducted and verified. The second method will illustrate how to utilize the physical model to improve system design and modification. In this method, vehicle data will be used as inputs to the model, the model output will be verified against vehicle output data. The two methods are excellent tools for the Design For Six Sigma process (DFSS design).
Technical Paper

A Practical Failure Limit for Sheared Edge Stretching of Automotive Body Panels

2010-04-12
2010-01-0986
Edge cracking is one of the major formability concerns in advanced high strength steel (AHSS) stamping. Although finite element analysis (FEA) together with the Forming Limit Diagram has been widely used, it has not effectively predicted edge cracking. Primary problems in developing a methodology to insure that parts are safe from edge cracking are the lack of an effective failure criterion and a simple and accurate measurement method that is not only usable in both die tryout and production but also can be verified by finite element analysis. The intent of this study is to develop a methodology to ensure that parts with internal cutouts, such as a body side panel can be produced without edge cracking. During tryout and production, edge cracking has traditionally been detected by visual examination, but this approach is not adequate for ensuring freedom from edge cracking.
Technical Paper

Digital Image Correlation System Application - Measuring Deformation and Load of Convertible Top Fabric

2010-04-12
2010-01-0954
Strain gages have been widely used for measuring strain or deformation. They are very reliable and accurate. However, for application on fabric material, strain gages have their limitations. In this paper, digital image correlation (DIC) is used to measure the deformation around the rear window on a convertible top. The test needed to be non destructive, the vehicle and convertible top could not be damaged. The deformation or strain measured on the fabric was used to estimate the force experienced at the interface between the glass and the fabric during an opening/closing application. A speckle pattern was created on the convertible fabric where deformation was to be measured with washable paint. The image of the measured area was first recorded. The convertible top was then latched down and the fabric was stretched. A second image was recorded again. Based on the two images, the deformation/strain between the two conditions was measured.
Technical Paper

Determination of Vehicle Resistance Curve in Engine Cooling System Design

2010-04-12
2010-01-0933
A process to create a vehicle resistance curve based on airflow predictions using Computational Fluid Dynamics (CFD) simulation technique is presented. 1-dimensional engine cooling system simulation tool KULI is used to compute the coefficients of vehicle resistance curve. A full factorial Design of Experiment (DOE) established the relationship between the coefficients and the sum of absolute difference between KULI and CFD predictions. The NLPQL optimization routine is used to accurately predict the coefficients so that sum of absolute difference between KULI and CFD predictions is minimized.
Technical Paper

Standardization Proposal for “Automotive-Grade AVRCP” with Respect to In-Car use of Bluetooth Devices.

2010-04-12
2010-01-0689
With regard to the use of portable consumer electronic devices in an automobile, Bluetooth has become a widely accepted method for short range wireless communication between a vehicle and a portable device. One Bluetooth connectivity protocol for this use case is Audio/Visual Remote Control Profile (AVRCP). Currently, AVRCP specifies mandatory commands for both target devices (cellular phones and audio players), as well as for control devices like an audio head unit. However, there is no requirement that control devices and target devices implement the same commands, nor is there a requirement that supported commands utilize information that would be useful in improving the driver's experience (i.e. metadata). This paper will describe the impact of this reality from the perspective of the automotive consumer, and propose an “automotive grade” AVRCP that could provide a more consistent consumer experience in the automotive market.
Technical Paper

Fatigue Based Damage Analysis with Correlation to Customer Duty Cycle Using Design Reliability and Confidence

2010-04-12
2010-01-0200
This paper will define the process for correlating fatigue based customer duty cycle with laboratory bench test data. The process includes the development of the Median and Design Load-Life curve equations. The Median Load-Life curve is a best fit linear regression; whereas, the Design Load-Life curve incorporates component specific reliability and confidence targets. To account for the statistical distribution of fatigue life, due to sample size, the one-side lower-bound tolerance limit method ( Lieberman, 1958 ) will be utilized. This paper will include a correlation between the predicted design fatigue life and the actual product life.
Technical Paper

Evaluation of the Hybrid III 10-year-Old Dummy Chest Response in the Sled Test Environment

2010-04-12
2010-01-0137
Ten sled tests were conducted with a Hybrid III 10-year-old dummy under a 3-point belt only restraint condition to evaluate its performance. The results of the Hybrid III 10-year-old in these tests indicate that there are artifactural noise spikes observable in the transducer responses. A number of metal-to-metal contacts in the shoulder area were identified as one of the sources for the chest acceleration spikes. Noise spikes were also observed in the response from multiple body regions; however, the source of the spikes could not be determined. Compared to the other Hybrid III dummies, non-characteristic dummy chest deflection responses were also observed. This limited analysis indicates that the Hybrid III 10-year-old dummy requires additional development work to eliminate the metal-to-metal contacts in the shoulder area and to understand and correct the other sources of the noise spikes. More investigation is needed to determine if the chest deflection response is appropriate.
Technical Paper

Monotonic and Fatigue Behavior of Magnesium Extrusion Alloy AM30: An International Benchmark Test in the “Magnesium Front End Research and Development Project”

2010-04-12
2010-01-0407
Magnesium alloys are the lightest structural metal and recently attention has been focused on using them for structural automotive components. Fatigue and durability studies are essential in the design of these load-bearing components. In 2006, a large multinational research effort, Magnesium Front End Research & Development (MFERD), was launched involving researchers from Canada, China and the US. The MFERD project is intended to investigate the applicability of Mg alloys as lightweight materials for automotive body structures. The participating institutions in fatigue and durability studies were the University of Waterloo and Ryerson University from Canada, Institute of Metal Research (IMR) from China, and Mississippi State University, Westmorland, General Motors Corporation, Ford Motor Company and Chrysler Group LLC from the United States.
Technical Paper

Design Improvements of Urea SCR Mixing for Medium-Duty Trucks

2013-04-08
2013-01-1074
To meet the 2010 diesel engine emission regulations, an aftertreatment system was developed to reduce HC, CO, NOx and soot. In NOx reduction, a baseline SCR module was designed to include urea injector, mixing decomposition tube and SCR catalysts. However, it was found that the baseline decomposition tube had unacceptable urea mixing performance and severe deposit issues largely because of poor hardware design. The purpose of this article is to describe necessary development work to improve the baseline system to achieve desired mixing targets. To this end, an emissions Flow Lab and computational fluid dynamics were used as the main tools to evaluate urea mixing solutions. Given the complicated urea spray transport and limited packaging space, intensive efforts were taken to develop pre-injector pipe geometry, post-injector cone geometry, single mixer design modifications, and dual mixer design options.
X