Refine Your Search

Topic

Search Results

Viewing 1 to 19 of 19
Journal Article

Modeling and Simulation of a Series Hybrid CNG Vehicle

2014-04-01
2014-01-1802
Predicting fuel economy during early stages of concept development or feasibility study for a new type of powertrain configuration is an important key factor that might affect the powertrain configuration decision to meet CAFE standards. In this paper an efficient model has been built in order to evaluate the fuel economy for a new type of charge sustaining series hybrid vehicle that uses a Genset assembly (small 2 cylinders CNG fueled engine coupled with a generator). A first order mathematical model for a Li-Ion polymer battery is presented based on actual charging /discharging datasheet. Since the Genset performance data is not available, normalized engine variables method is used to create powertrain performance maps. An Equivalent Consumption Minimization Strategy (ECMS) has been implemented to determine how much power is supplied to the electric motor from the battery and the Genset.
Journal Article

An Engine Thermal Management System Design for Military Ground Vehicle - Simultaneous Fan, Pump and Valve Control

2016-04-05
2016-01-0310
The pursuit of greater fuel economy in internal combustion engines requires the optimization of all subsystems including thermal management. The reduction of cooling power required by the electromechanical coolant pump, radiator fan(s), and thermal valve demands real time control strategies. To maintain the engine temperature within prescribed limits for different operating conditions, the continual estimation of the heat removal needs and the synergistic operation of the cooling system components must be accomplished. The reductions in thermal management power consumption can be achieved by avoiding unnecessary overcooling efforts which are often accommodated by extreme thermostat valve positions. In this paper, an optimal nonlinear controller for a military M-ATV engine cooling system will be presented. The prescribed engine coolant temperature will be tracked while minimizing the pump, fan(s), and valve power usage.
Journal Article

Control of a Thermoelectric Cooling System for Vehicle Components and Payloads - Theory and Test

2017-03-28
2017-01-0126
Hybrid vehicle embedded systems and payloads require progressively more accurate and versatile thermal control mechanisms and strategies capable of withstanding harsh environments and increasing power density. The division of the cargo and passenger compartments into convective thermal zones which are independently managed can lead to a manageable temperature control problem. This study investigates the performance of a Peltier-effect thermoelectric zone cooling system to regulate the temperature of target objects (e.g., electronic controllers, auxiliary computer equipment, etc) within ground vehicles. Multiple thermoelectric cooling modules (TEC) are integrated with convective cooling fans to provide chilled air for convective heat transfer from a robust, compact, and solid state device. A series of control strategies have been designed and evaluated to track a prescribed time-varying temperature profile while minimizing power consumption.
Journal Article

A Nonlinear Model Predictive Control Strategy with a Disturbance Observer for Spark Ignition Engines with External EGR

2017-03-28
2017-01-0608
This research proposes a control system for Spark Ignition (SI) engines with external Exhaust Gas Recirculation (EGR) based on model predictive control and a disturbance observer. The proposed Economic Nonlinear Model Predictive Controller (E-NMPC) tries to minimize fuel consumption for a number of engine cycles into the future given an Indicated Mean Effective Pressure (IMEP) tracking reference and abnormal combustion constraints like knock and combustion variability. A nonlinear optimization problem is formulated and solved in real time using Sequential Quadratic Programming (SQP) to obtain the desired control actuator set-points. An Extended Kalman Filter (EKF) based observer is applied to estimate engine states, combining both air path and cylinder dynamics. The EKF engine state(s) observer is augmented with disturbance estimation to account for modeling errors and/or sensor/actuator offset.
Journal Article

Impacts of Adding Photovoltaic Solar System On-Board to Internal Combustion Engine Vehicles Towards Meeting 2025 Fuel Economy CAFE Standards

2016-04-05
2016-01-1165
The challenge of meeting the Corporate Average Fuel Economy (CAFE) standards of 2025 has led to major developments in the transportation sector, among which is the attempt to utilize clean energy sources. To date, use of solar energy as an auxiliary source of on-board fuel has not been extensively investigated. This paper is the first study at undertaking a comprehensive analysis of using solar energy on-board by means of photovoltaic (PV) technologies to enhance automotive fuel economies, extend driving ranges, reduce greenhouse gas (GHG) emissions, and ensure better economic value of internal combustion engine (ICE) -based vehicles to meet CAFE standards though 2025. This paper details and compares various aspects of hybrid solar electric vehicles with conventional ICE vehicles.
Technical Paper

Experimental Analysis of a Multiple Radiator Cooling System with Computer Controlled Flow Rates

2020-04-14
2020-01-0944
The automotive cooling system configuration has remained fixed for many decades with a large radiator plus fan, coolant pump, and bypass valve. To reduce cooling system power consumption, the introduction of multiple computer-controlled heat exchangers may offer some benefits. A paradigm shift from a single large radiator, sized for maximum load, to n-small radiators with individual flow control valves should allow fine tuning of the heat rejection needs to minimize power. In this project, a series of experimental scenarios featuring two identical parallel radiators have been studied for low thermal load engine cooling (e.g., idling) in ground transportation applications. For high thermal load scenarios using two radiators, the fans required between 1120 - 3600 W to maintain the system about the coolant reference temperature of 85oC.
Technical Paper

Engine-in-the-Loop Study of a Hierarchical Predictive Online Controller for Connected and Automated Heavy-Duty Vehicles

2020-04-14
2020-01-0592
This paper presents a cohesive set of engine-in-the-loop (EIL) studies examining the use of hierarchical model-predictive control for fuel consumption minimization in a class-8 heavy-duty truck intended to be equipped with Level-1 connectivity/automation. This work is motivated by the potential of connected/automated vehicle technologies to reduce fuel consumption in both urban/suburban and highway scenarios. The authors begin by presenting a hierarchical model-predictive control scheme that optimizes multiple chassis and powertrain functionalities for fuel consumption. These functionalities include: vehicle routing, arrival/departure at signalized intersections, speed trajectory optimization, platooning, predictive optimal gear shifting, and engine demand torque shaping. The primary optimization goal is to minimize fuel consumption, but the hierarchical controller explicitly accounts for other key objectives/constraints, including operator comfort and safe inter-vehicle spacing.
Technical Paper

Advanced Thermal Management for Internal Combustion Engines - Valve Design, Component Testing and Block Redesign

2006-04-03
2006-01-1232
Advanced engine cooling systems can enhance the combustion environment, increase fuel efficiency, and reduce tailpipe emissions with less parasitic engine load. The introduction of computer controlled electro-mechanical valves, radiator fans, and coolant pumps require mathematic models and real time algorithms to implement intelligent thermal control strategies for prescribed engine temperature tracking. Smart butterfly valves can replace the traditional wax-based thermostat to control the coolant flow based on both engine temperature and operating conditions. The electric water pump and radiator fan replace the mechanically driven components to reduce unnecessary engine loads at high speeds and provide better cooling at low speeds.
Technical Paper

Multiple Heat Exchangers for Automotive Systems - A Design Tool

2022-03-29
2022-01-0180
A single radiator cooling system architecture has been widely applied in ground vehicles for safe equipment (e.g., engine block, electronics, and motors) temperature control. The introduction of multiple smaller heat exchangers provides additional energy management features and alternate pathways for continued operation in case of critical subsystem failure. Although cooling performance is often designed for maximum thermal loads, systems typically operate at a fraction of the peak values for most of their life cycle. In this project, a two-radiator configuration with variable flow rates and valve positions has been mathematically modelled and experimentally validated to study its performance feasibility. A multi-node resistance-capacitance thermal model was derived using the ε−NTU approach with accompanying convective and conductive heat transfer pathways within the system.
Technical Paper

A Prognostic Based Control Framework for Hybrid Electric Vehicles

2022-03-29
2022-01-0352
Electrified transportation has received significant interest recently because of sustainable and clean energy goals. However, the degradation of electrical components such as energy storage systems raises system reliability and economic concerns. In this paper, a prognostic-based control strategy is proposed for hybrid electric vehicles (HEVs) to abate the degradation of energy systems. Degradation forecasting models of electrical components are developed to predict their degradation paths. The predicted results are then used to control HEVs in order to reduce the degradation of components.
Technical Paper

A Heuristic Supervisory Controller for a 48V Hybrid Electric Vehicle Considering Fuel Economy and Battery Aging

2019-01-15
2019-01-0079
Most studies on supervisory controllers of hybrid electric vehicles consider only fuel economy in the objective function. Taking into consideration the importance of the energy storage system health and its impact on the vehicle’s functionality, cost, and warranty, recent studies have included battery degradation as the second objective function by proposing different energy management strategies and battery life estimation methods. In this paper, a rule-based supervisory controller is proposed that splits the torque demand based not only on fuel consumption, but also on the battery capacity fade using the concept of severity factor. For this aim, the severity factor is calculated at each time step of a driving cycle using a look-up table with three different inputs including c-rate, working temperature, and state of charge of the battery. The capacity loss of the battery is then calculated using a semi-empirical capacity fade model.
Technical Paper

Fast Engine Torque Variation Compensation for HEVs Using Permanent Magnet Synchronous Motor and Explicit MPC

2021-04-06
2021-01-0718
This research proposes to leverage the fast response time of Permanent Magnet Synchronous Motors (PMSMs) to compensate for crank angle resolved engine torque variations caused by cycle-by-cycle combustion variations. This method reduces powertrain vibration and enables engine calibrations with high combustion variation that produces low fuel consumption. This research integrates a Field Oriented Control (FOC) strategy with an Explicit Model Predictive Control (EMPC) to trace previewed current references. The previewed current references are computed from the engine torque difference between predicted nominal operation and the measured torque output. This research reveals that the MPC can track a d-q current reference without overshoot, rendering current magnitude constraints unnecessary in the MPC formulation. A control rate penalty is used to tune the aggressiveness of transient voltage demand and meet with the DC voltage limit.
Technical Paper

Real-Time Reinforcement Learning Optimized Energy Management for a 48V Mild Hybrid Electric Vehicle

2019-04-02
2019-01-1208
Energy management of hybrid vehicle has been a widely researched area. Strategies like dynamic programming (DP), equivalent consumption minimization strategy (ECMS), Pontryagin’s minimum principle (PMP) are well analyzed in literatures. However, the adaptive optimization work is still lacking, especially for reinforcement learning (RL). In this paper, Q-learning, as one of the model-free reinforcement learning method, is implemented in a mid-size 48V mild parallel hybrid electric vehicle (HEV) framework to optimize the fuel economy. Different from other RL work in HEV, this paper only considers vehicle speed and vehicle torque demand as the Q-learning states. SOC is not included for the reduction of state dimension. This paper focuses on showing that the EMS with non-SOC state vectors are capable of controlling the vehicle and outputting satisfactory results. Electric motor torque demand is chosen as action.
Technical Paper

The Influence of Cooling Air-Path Restrictions on Fuel Consumption of a Series Hybrid Electric Off-Road Tracked Vehicle

2023-10-31
2023-01-1611
Electrification of off-road vehicle powertrains can increase mobility, improve energy efficiency, and enable new utility by providing high amounts of electrical power for auxiliary devices. These vehicles often operate in extreme temperature conditions at low ground speeds and high power levels while also having significant cooling airpath restrictions. The restrictions are a consequence of having grilles and/or louvers in the airpath to prevent damage from the operating environment. Moreover, the maximum operating temperatures for high voltage electrical components, like batteries, motors, and power-electronics, can be significantly lower than those of the internal combustion engine. Rejecting heat at a lower temperature gradient requires higher flow rates of air for effective heat exchange to the operating environment at extreme temperature conditions.
Journal Article

An Electric Motor Thermal Bus Cooling System for Vehicle Propulsion - Design and Test

2020-04-14
2020-01-0745
Automotive and truck manufacturers are introducing electric propulsion systems into their ground vehicles to reduce fossil fuel consumption and harmful tailpipe emissions. The mobility shift to electric motors requires a compact thermal management system that can accommodate heat dissipation demands with minimum energy consumption in a confined space. An innovative cooling system design, emphasizing passive cooling methods coupled with a small liquid system, using a thermal bus architecture has been explored. The laboratory experiment features an emulated electric motor interfaced to a thermal cradle and multiple heat rejection pathways to evaluate the transfer of generated heat to the ambient surroundings. The thermal response of passive (e.g., carbon fiber, high thermal conductivity material, thermosyphon) and active cooling systems are investigated for two operating scenarios.
Technical Paper

An Innovative Electric Motor Cooling System for Hybrid Vehicles - Model and Test

2019-04-02
2019-01-1076
Enhanced electric motor performance in transportation vehicles can improve system reliability and durability over rigorous operating cycles. The design of innovative heat rejection strategies in electric motors can minimize cooling power consumption and associated noise generation while offering configuration flexibility. This study investigates an innovative electric motor cooling strategy through bench top thermal testing on an emulated electric motor. The system design includes passive (e.g., heat pipes) cooling as the primary heat rejection pathway with supplemental conventional cooling using a variable speed coolant pump and radiator fan(s). The integrated thermal structure, “cradle”, transfers heat from the motor shell towards an end plate for heat dissipation to the ambient surroundings or transmission to an external thermal bus to remote heat exchanger.
Journal Article

A Thermal Bus for Vehicle Cooling Applications - Design and Analysis

2017-03-28
2017-01-0266
Designing an efficient cooling system with low power consumption is of high interest in the automotive engineering community. Heat generated due to the propulsion system and the on-board electronics in ground vehicles must be dissipated to avoid exceeding component temperature limits. In addition, proper thermal management will offer improved system durability and efficiency while providing a flexible, modular, and reduced weight structure. Traditional cooling systems are effective but they typically require high energy consumption which provides motivation for a paradigm shift. This study will examine the integration of passive heat rejection pathways in ground vehicle cooling systems using a “thermal bus”. Potential solutions include heat pipes and composite fibers with high thermal properties and light weight properties to move heat from the source to ambient surroundings.
Technical Paper

Evaluating the Effects of an Electrically Assisted Turbocharger on Scavenging Control for an Opposed Piston Two Stroke (OP2S) Compression Ignition Engine

2024-04-09
2024-01-2388
Opposed piston two-stroke (OP2S) diesel engines have demonstrated a reduction in engine-out emissions and increased efficiency compared to conventional four-stroke diesel engines. Due to the higher stroke-to-bore ratio and the absence of a cylinder head, the heat transfer loss to the coolant is lower near ‘Top Dead Center.’ The selection and design of the air path is critical to realizing the benefits of the OP2S engine architecture. Like any two-stroke diesel engine, the scavenging process and the composition of the internal residuals are predominantly governed by the pressure differential between the intake and the exhaust ports. Without dedicated pumping strokes, the two-stroke engine architecture requires external devices to breathe.
Technical Paper

Energy-Aware Predictive Control for the Battery Thermal Management System of an Autonomous Off-Road Vehicle

2024-04-09
2024-01-2665
Off-road vehicles are increasingly adopting hybrid and electric powertrains for improved mobility, range, and energy efficiency. However, their cooling systems consume a significant amount of energy, affecting the vehicle’s operating range. This study develops a predictive controller for the battery thermal management system in an autonomous electric tracked off-road vehicle. By analyzing the system dynamics, the controller determines the optimal preview horizon and controller timestep. Sensitivity analysis is conducted to evaluate temperature tracking and energy consumption. Compared to an optimal controller without preview, the predictive controller reduces energy consumption by 55%. Additionally, a relationship between cooling system energy consumption and battery size is established. The impact of the preview horizon on energy consumption is examined, and a tradeoff between computational cost and optimality is identified.
X