Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

The Effect of Driving Conditions and Ambient Temperature on Light Duty Gasoline-Electric Hybrid Vehicles (1): Particulate Matter Emission Rates and Size Distributions

2007-09-01
2007-01-2136
Gasoline-electric hybrid vehicle technology has been gaining widespread acceptance and has the potential to reduce emissions through reduced fuel consumption. In this study, particulate matter number and mass emission rates, organic and elemental carbon compositions, and number-based size distributions were measured from four gasoline-electric hybrid vehicles (2005 Ford Escape Hybrid, 2004 Toyota Prius, 2003 Honda Civic Hybrid, and 2000 Honda Insight). In addition, one small conventional gasoline vehicle (2002 SmartCar) was tested. The vehicles were driven over five driving cycles and at steady-state speeds of 40 and 80 km/h. Each test was performed at 20°C and at -18°C. Testing took place at the Environmental Science & Technology Centre of Environment Canada using conventional chassis dynamometer procedures. Average distance based emission rates are given for each vehicle under each test condition.
Technical Paper

The Effect of Driving Conditions and Ambient Temperature on Light Duty Gasoline-Electric Hybrid Vehicles (2): Fuel Consumption and Gaseous Pollutant Emission Rates

2007-09-01
2007-01-2137
Fuel consumption and gaseous emission data (CO, NOx, THC, and CO2) are reported for four commercially available gasoline-electric hybrid vehicles and one conventional gasoline vehicle tested on a chassis dynamometer over five transient driving cycles (LA4, LA92, HWFET, NYCC, US06), and two steady state modes (40 and 80 km/h), at two ambient temperatures (20 °C, and -18 °C). All vehicles exhibited higher fuel consumption during transient cycles compared to steady-state modes. Cold ambient temperature had a more detrimental effect on fuel consumption rates of the hybrid vehicles compared to those of the conventional gasoline vehicle.
Technical Paper

The Effect of Driving Conditions and Ambient Temperature on Light Duty Gasoline-electric Hybrid Vehicles (3): Battery Energy

2010-10-25
2010-01-2289
The dependence of gasoline-electric hybrid vehicle energies on driving conditions and ambient temperature is presented for different drive cycles (2xLA4, 2xLA92, 2xUS06, HWFET and 2xNYCC) and temperatures (20°C and -18°C). The tests were carried out at the Emissions Research and Measurement Division of Environment Canada. Hybrid battery pack current was measured at a frequency of 10 Hz. Regenerative braking energy, charging energy from the engine and battery discharge energy were estimated by using modal speed. The magnitudes of battery energies were found to be directly related to drive cycle properties. Battery discharge energy was very strongly correlated to emission factors of CO₂, while energy recovered by regenerative braking and charging energy from the engine had low to very strong correlations to CO₂ emission factors. CO, NOx and HC had low linear correlations to battery discharge energy.
X