Refine Your Search

Search Results

Viewing 1 to 5 of 5
Technical Paper

Investigation of Vehicle Speed Prediction from Neural Network Fit of Real World Driving Data for Improved Engine On/Off Control of the EcoCAR3 Hybrid Camaro

The EcoCAR3 competition challenges student teams to redesign a 2016 Chevrolet Camaro to reduce environmental impacts and increase energy efficiency while maintaining performance and safety that consumers expect from a Camaro. Energy management of the new hybrid powertrain is an integral component of the overall efficiency of the car and is a prime focus of Colorado State University’s (CSU) Vehicle Innovation Team. Previous research has shown that error-less predictions about future driving characteristics can be used to more efficiently manage hybrid powertrains. In this study, a novel, real-world implementable energy management strategy is investigated for use in the EcoCAR3 Hybrid Camaro. This strategy uses a Nonlinear Autoregressive Artificial Neural Network with Exogenous inputs (NARX Artificial Neural Network) trained with real-world driving data from a selected drive cycle to predict future vehicle speeds along that drive cycle.
Technical Paper

In-flight Icing Hazard Verification with NASA's Icing Remote Sensing System for Development of a NEXRAD Icing Hazard Level Algorithm

From November 2010 until May of 2011, NASA's Icing Remote Sensing System was positioned at Platteville, Colorado between the National Science Foundation's S-Pol radar and Colorado State University's CHILL radar (collectively known as FRONT, or ‘Front Range Observational Network Testbed’). This location was also underneath the flight-path of aircraft arriving and departing from Denver's International Airport, which allowed for comparison to pilot reports of in-flight icing. This work outlines how the NASA Icing Remote Sensing System's derived liquid water content and in-flight icing hazard profiles can be used to provide in-flight icing verification and validation during icing and non-icing scenarios with the purpose of comparing these times to profiles of polarized moment data from the two nearby research radars.
Technical Paper

Engineering the Motorsport Engineer

Motorsport Engineering is developing a foothold, around the World, as a field of academic preparation at the post-graduate level. To gain the appropriate practical skills to augment classroom education, and thus, for the graduates to successfully compete for employment in the Motorsport Industry, it is critical that the degree program has a strong experiential component. This paper describes the need to take an engineering approach to motorsport education by combining a discovery-based education with the traditional lecture format to realize synergistic results. The idea is that to effectively “engineer” the graduate, the student must have a strong skill set or a strong grasp of the fundamentals. The growth of the current educational program at Colorado State University and the effectiveness of merging the “inside-out” process, typical of the research mission, with the instructional practices of the University and with the needs of the Motorsport Industry are discussed.
Journal Article

Quantifying Uncertainty in Vehicle Simulation Studies

The design of vehicles, particularly hybrid and other advanced technology vehicles, is typically complex and benefits from systems engineering processes. Vehicle modeling and simulation have become increasingly important system design tools to improve the accuracy, repeatability, and flexibility of the design process. In developing vehicle computational models and simulation, there is an inevitable compromise between the level of detail and the development/computational cost. The tradeoff is specific to the requirements of each vehicle design effort. The assumptions and detail limitations used for vehicle simulations lead to a varying degree of result uncertainty for each design effort. This paper provides a literature review to investigate the state of the art vehicle simulation methods, and quantifies the uncertainty associated with components that are commonly allocated uncertainty.
Technical Paper

Economic and Efficient Hybrid Vehicle Fuel Economy and Emissions Modeling Using an Artificial Neural Network

High accuracy hybrid vehicle fuel consumption (FC) and emissions models used in practice today are the product of years of research, are physics based, and bear a large computational cost. However, it may be possible to replace these models with a non-physics based, higher accuracy, and computationally efficient versions. In this research, an alternative method is developed by training and testing a time series artificial neural network (ANN) using real world, on-road data for a hydraulic hybrid truck to predict instantaneous FC and emissions. Parameters affecting model fidelity were investigated including the number of neurons in the hidden layer, specific training inputs, dataset length, and hybrid system status. The results show that the ANN model was computationally faster and predicted FC within a mean absolute error of 0-0.1%. For emissions prediction the ANN model had a mean absolute error of 0-3% across CO2, CO, and NOx aggregate predicted concentrations.