Refine Your Search

Search Results

Technical Paper

Development of a Lab Reactor System for the Evaluation of Aftertreatment Catalysts for Stoichiometric Natural Gas Engines

Natural gas powered vehicles are attractive in certain applications due to their lower emissions in general than conventional diesel engines and the low cost of natural gas. For stoichiometric natural gas engines, the aftertreatment system typically consists only of a three-way catalyst (TWC). However, increasingly stringent NOx and methane regulations challenge current TWC technologies. In this work, a catalyst reactor system with variable lean/rich switching capability was developed for evaluating TWCs for stoichiometric natural gas engines. The effect of varying frequency and duty-cycle during lean/rich gas switching experiments was measured with a hot-wire anemometer (HWA) due to its high sensitivity to gas thermal properties. A theoretical reactor gas dispersion model was then developed and validated with the HWA measurements. The model is capable of predicting the actual lean/rich gas exposure to the TWC under different testing conditions.
Technical Paper

Lab Study of Urea Deposit Formation and Chemical Transformation Process of Diesel Aftertreatment System

Diesel exhaust fluid, DEF, (32.5 wt.% urea aqueous solution) is widely used as the NH3 source for selective catalytic reduction (SCR) of NOx in diesel aftertreatment systems. The transformation of sprayed liquid phase DEF droplets to gas phase NH3 is a complex physical and chemical process. Briefly, it experiences water vaporization, urea thermolysis/decomposition and hydrolysis. Depending on the DEF doser, decomposition reaction tube (DRT) design and operating conditions, incomplete decomposition of injected urea could lead to solid urea deposit formation in the diesel aftertreatment system. The formed deposits could lead to engine back pressure increase and DeNOx performance deterioration etc. The formed urea deposits could be further transformed to chemically more stable substances upon exposure to hot exhaust gas, therefore it is critical to understand this transformation process.
Technical Paper

NO2 Formation and Mitigation in an Advanced Diesel Aftertreatment System

Nitrogen dioxide (NO2) is known to pose a risk to human health and contributes to the formation of ground level ozone. In recognition of its human health implications, the American Conference of Governmental Industrial Hygienists (ACGIH) set a Threshold Limit Value (TLV) of 0.2 ppmv NO2 in 2012. For mobile sources, NO2 is regulated as a component of NOx (NO + NO2). In addition, the European Commission has indicated it is considering separate Euro 6 light-duty diesel and Euro VI heavy-duty diesel NO2 emissions limits likely to mitigate the formation of ground level ozone in urban areas. In this study, we conduct component-level reactor-based experiments to understand the effects that various aftertreatment catalyst technologies including diesel oxidation catalyst (DOC), diesel particulate filter (DPF), selective catalytic reduction (SCR) catalyst and ammonia oxidation (AMOX) catalyst have on the formation and mitigation of NO2 emissions.
Technical Paper

Predictive Modeling of Impact of ANR Non-Uniformity on Transient SCR System DeNOx Performance

Selective catalytic reduction (SCR) is a promising technology for meeting the stringent requirements pertaining to NOx emissions. One of the most important requirements to achieve high DeNOx performance is to have a high uniformity of ammonia to NOx ratio (ANR) at the SCR catalyst inlet. Steady state 3D computational fluid dynamics (CFD) models are frequently used for predicting ANR spatial distribution but are not feasible for running a transient cycle like Federal Test Procedure (FTP). On the other hand, 1D kinetic models run in real time and can predict transient SCR performance but do not typically capture the effect of non-axial non-uniformities. In this work, two 3D to 1D coupling methods have been developed to predict transient SCR system performance, taking the effect of ANR non-uniformity into account. First is a probability density function (PDF) based approach and the second is a geometrical sector based approach.
Technical Paper

Development and Validation of a Predictive Model for DEF Injection and Urea Decomposition in Mobile SCR DeNOx Systems

Selective catalytic reduction (SCR) of oxides of nitrogen with ammonia gas is a key technology that is being favored to meet stringent NOx emission standards across the world. Typically, in this technology, a liquid mixture of urea and water - known as Diesel Exhaust Fluid (DEF) - is injected into the hot exhaust gases leading to atomization and subsequent spray processes. The water content vaporizes, while the urea content undergoes thermolysis and forms ammonia and isocyanic acid, that can form additional ammonia through hydrolysis. Due to the increasing interest in SCR technology, it is desirable to have capabilities to model these processes with reasonable accuracy to both improve the understanding of processes important to the aftertreatment and to aid in system optimization. In the present study, a multi-dimensional model is developed to simulate DEF spray processes and the conversion of urea to ammonia. The model is then implemented into a commercial CFD code.
Technical Paper

A Study on the Emissions of Chemical Species from Heavy-Duty Diesel Engines and the Effects of Modern Aftertreatment Technology

A comparative analysis was made on the emissions from a 2004 and a 2007 heavy-duty diesel engine to determine how new engine and emissions technologies have affected the chemical compounds found in the exhaust gases. Representative samples were collected from a source dilution sampling system and analyzed for both criteria and unregulated gaseous and particulate emissions. Results have shown that the 2007 regulations compliant engine and emissions technology not only reduced the specifically regulated exhaust pollutants, but also significantly reduced the majority of unregulated chemical species. It is believed that these reductions were achieved through the use of engine optimization, aftertreatment system integration, and ultra-low sulfur diesel fuel.
Technical Paper

Effect of Hydrothermal Aging on the Catalytic Performance and Morphology of a Vanadia SCR Catalyst

Titania supported vanadia catalysts have been widely used for the selective catalytic reduction (SCR) of nitrogen oxides (NOx) in diesel exhaust aftertreatment systems. Vanadia SCR (V-SCR) catalysts are preferred for many applications because they have demonstrated advantages of catalytic activity for NOx removal and tolerance to sulfur poisoning. The primary shortcoming of V-SCR catalysts is their thermal durability. Degradation in NOx conversion is also related to aging conditions such as at high temperatures. In this study, the impact that short duration hydrothermal aging has on a state-of-the-art V-SCR catalyst was investigated by aging for 2 hr intervals with progressively increased temperatures from 525 to 700°C. The catalytic performance of this V-SCR catalyst upon aging was evaluated by three different reactions of NH₃ SCR, NH₃ oxidation, and NO oxidation under simulated diesel exhaust conditions from 170 to 500°C.
Technical Paper

Thermal and Fluid Dynamic Considerations in Aftertreatment System Design for SCR Solid Deposit Mitigation

Selective Catalytic Reduction (SCR) of oxides of nitrogen (NOx) with ammonia gas has established itself as an effective diesel aftertreatment technology to meet stringent emission standards enforced by worldwide regulatory bodies. Typically, in this technology, aqueous urea solution of eutectic composition - known as Diesel Exhaust Fluid (DEF) - is injected into hot exhaust gases leading to a series of thermal, fluid dynamic and reactive processes that eventually produces the ammonia necessary for NOx reduction reactions within monolithic catalytic substrates. Incomplete decomposition of the injected urea can lead to formation of solid deposits that adversely affect system performance by increasing the engine back pressure, reducing de-NOx efficiency, and lowering the overall fuel economy.
Technical Paper

A Comparison of Black Carbon Measurements to Solid Particle Number Measurements Made over Steady State and Transient Cycles

Diesel engines have been identified as contributing to more than half of the transport sectors black carbon (BC) emissions in the US. This large contribution to atmospheric BC concentrations has raised concern about source specific emission rates, including off-highway engines. The European Union has recently implemented more stringent particulate regulations in the form of particle number via the Particle Measurement Programme (PMP) methodology. The PMP method counts the non-volatile fraction of particulate matter (PM) above 23 nm and below 2.5 μm via a condensation particle counter. This study evaluates a surrogate black carbon method which uses the PMP particle count method with a correlation factor to the BC fraction. The transient capable Magee Scientific Aethalometer (AE-33) 880 nm wavelength channel was used to determine the BC fraction.
Technical Paper

Effect of Reductive Regeneration Conditions on Reactivity and Stability of a Pd-Based Oxidation Catalyst for Lean-Burn Natural Gas Applications

Regulations on methane emissions from lean-burn natural gas (NG) and lean-burn dual fuel (natural gas and diesel) engines are becoming more stringent due to methane’s strong greenhouse effect. Palladium-based oxidation catalysts are typically used for methane reduction due to their relative high reactivity under lean conditions. However, the catalytic activity of these catalysts is inhibited by the water vapor in exhaust and decreases over time from exposure to trace amounts of sulfur. The reduction of deactivated catalysts in a net rich environment is known to be able to regenerate the catalyst. In this work, a multicycle methane light-off & extinction test protocol was first developed to probe the catalyst reactivity and stability under simulated exhaust conditions. Then, the effect of two different regeneration gas compositions, denoted as regen-A and regen-B, was evaluated on a degreened catalyst and a catalyst previously tested on a natural gas engine.
Technical Paper

The Effect of Diesel Exhaust Fluid Dosing on Tailpipe Particle Number Emissions

Introduction of modern diesel aftertreatment, primarily selective catalytic reduction (SCR) designed to reduced NOx, has increased the presence of urea decomposition byproducts, mainly ammonia, in the aftertreatment system. This increase in ammonia has been shown to lead to particle formation in the aftertreatment system. In this study, a state of the art diesel exhaust fluid (DEF)-SCR system was investigated in order to determine the influence of DEF dosing on solid particle count. Post diesel particulate filter (DPF) particle count (> 23 nm) is shown to increase by over 400% during the World Harmonized Transient Cycle (WHTC) due to DEF dosing. This increase in tailpipe particle count warranted a detailed parametric study of DEF dosing parameters effect on tailpipe particle count. Global ammonia to NOx ratio, DEF droplet residence time, and SCR catalyst inlet temperature were found to be significant factors in post-DPF DEF based particle formation.
Technical Paper

Emissions of Organic Species from a Nonroad Vanadium-Based SCR Aftertreatment System

U.S. and European nonroad diesel emissions regulations have led to the implementation of various exhaust aftertreatment solutions. One approved configuration, a vanadium-based selective catalytic reduction catalyst followed by an ammonia oxidation catalyst (V-SCR + AMOX), does not require the use of a diesel oxidation catalyst (DOC) or diesel particulate filter (DPF). While certification testing has shown the V-SCR + AMOX system to be capable of meeting the nitrogen oxides, carbon monoxide, and particulate matter requirements, open questions remain regarding the efficacy of this aftertreatment for volatile and nonvolatile organic emissions removal, especially since the removal of this class of compounds is generally attributed to both the DOC and DPF.
Technical Paper

Characterization of Criteria and Organic Matter Emissions from a Nonroad Diesel Engine Equipped with a Selective Catalytic Reduction System

More stringent emission requirements for nonroad diesel engines both in the U.S. and Europe have spurred the development of engines and exhaust aftertreatment technologies. In this study, one such system consisting of a diesel oxidation catalyst, zeolite-based selective catalytic reduction catalyst, and an ammonia oxidation catalyst was evaluated using both nonroad transient and steady-state cycles in order to understand the emission characteristics of this configuration. Criteria pollutants were analyzed and particular attention was given to organic compound and NO2 emissions since both of these could be significantly affected by the absence of a diesel particulate filter that typically helps reduce semi-volatile and particle-phase organics and consumes NO2 via passive soot oxidation. Results are then presented on a detailed speciation of organic emissions including alkanes, cycloalkanes, aromatics, polycyclic aromatic hydrocarbons and their derivatives, and hopanes and steranes.
Technical Paper

Analysis of Packaging Impact on Emission Catalyst Design

Diesel emission aftertreatment system is usually designed to meet stringent packaging constraints, rendering a difficult situation to achieve perfect flow distribution inside the catalytic unit. The non-uniform flow pattern leads to a mal-distribution of flow velocity, temperature, and gas species in catalyst unit. Some catalysts are exposed to harsh working environment, while the rest catalysts are underutilized. This lowers the efficiency of overall catalyst unit and thus requires an oversized system to meet emission requirements. The flow mal-distribution also accelerates the uneven catalyst degradation, lowering the system durability. Hence, a quantitative description of packaging impact on catalyst performance is critical to assess the system efficiency and durability. In the present work, a mapping method is developed to combine catalyst performance with computational fluid dynamics (CFD) simulation.
Technical Paper

Evaluation of Numerical Modeling Strategy for Prediction of Backpressure Across Various Configuration of Diesel Engine based After Treatment System

After treatment (AT) system has evolved over the period of time with ever changing stringent emission norms. Systems are still developing to meet new evolving challenges of diesel engine to meet fuel economy & necessary power to drive the end application. Times have changed when the purpose of AT system was to take care of not only treating engine exhaust but also responsible for attenuation of engine propagated noise. The systems today have become sophisticated and smart enough to work wide range of test conditions & duty cycle to meet the emission norms. Current trend is to meet the performance targets by making these designs compact & less restrictive in terms of backpressure. This creates tradeoff within acoustics attenuation, performance parameters & backpressure offered by these devices. One of the major constraint in development of AT, is available customer packaging space & time to develop these designs in shortest period.
Technical Paper

Development, Validation and ECM Embedment of a Physics-Based SCR on Filter Model

SCR on Filter (SCRoF) is an efficient and compact NOX and PM reduction technology already used in series production for light-duty applications. The technology is now finding its way into the medium duty and heavy duty market. One of the key challenges for successful application is the robustness to real world variations. The solution to this challenge can be found by using model-based control algorithms, utilizing state estimation by physics-based catalyst models. This paper focuses on the development, validation and real time implementation of a physics-based control oriented SCRoF model. An overview of the developed model will be presented, together with a brief description of the model parameter identification and validation process using engine test bench measurement data. The model parameters are identified following a streamlined approach, focusing on decoupling the effects of deNOx and soot phenomena.
Technical Paper

Catalyst Sulfur Poisoning and Recovery Behaviors: Key for Designing Advanced Emission Control Systems

Advanced emission control systems for diesel engines usually include a combination of Diesel Oxidation Catalyst (DOC), Diesel Particulate Filter (DPF), Selective Catalytic Reduction (SCR), and Ammonia Slip Catalyst (ASC). The performance of these catalysts individually, and of the aftertreatment system overall, is negatively affected by the presence of oxides of sulfur, originating from fuel and lubricant. In this paper, we illustrated some key aspects of sulfur interactions with the most commonly used types of catalysts in advanced aftertreatment systems. In particular, DOC can oxidize SO2 to SO3, collectively referred to as SOx, and store these sulfur containing species. The key functions of a DOC, such as the ability to oxidize NO and HC, are degraded upon SOx poisoning. The impact of sulfur poisoning on the catalytic functions of a DPF is qualitatively similar to DOC.
Technical Paper

Meeting the US 2007 Heavy-Duty Diesel Emission Standards - Designing for the Customer

The paper covers the design and development of Heavy-Duty (HD) Diesel engines that meet the 2007 HD US EPA emission standards. These standards are the most stringent standards in the world for on-highway HD diesel engines, and have driven the application of new technologies, which includes: particulate aftertreatment, crankcase ventilation systems, and second generation cooled EGR. The paper emphasizes the importance of designing the product to meet the tough expectations of the trucking industry - for lowest total cost of ownership, lowest operating costs, high uptime, ease of maintenance, high performance and durability. A key objective was that these new low emission engines should meet or exceed the performance, reliability and fuel economy standards set by the products they replace. Additionally, these engines were designed to be fully compatible and emissions compliant with bio-diesel B20 blends that meet the ASTM and EMA fuel standards.
Journal Article

Comparison of Measurement Strategies for Light Absorbing Aerosols from Modern Diesel Engines

Light absorbing components of aerosols, often called black carbon (BC), are emitted from combustion sources and are believed to play a considerable role in direct atmospheric radiative forcing by a number of climate scientists. In addition, it has been shown that BC is associated with adverse health effects in a number of epidemiological studies. Although the optical properties (both absorbing and scattering) of combustion aerosols are needed in order to accurately assess the impact of emissions on radiative forcing, many models use radiative properties of diesel particulate matter that were determined over two decades ago. In response to concerns of the human health impacts of particulate matter (PM), regulatory bodies around the world have significantly tightened PM emission limits for diesel engines. These requirements have resulted in considerable changes in engine technology requiring updated BC measurements from modern engines equipped with aftertreatment systems.
Journal Article

Impact of Hydrocarbons on the Dual (Oxidation and SCR) Functions of Ammonia Oxidation Catalysts

Ammonia oxidation (AMOX) catalysts are critical parts of most diesel aftertreatment systems around the world. These catalysts are positioned downstream of selective catalytic reduction (SCR) catalysts and remove unreacted NH3 that passes through the SCR catalyst. In many configurations, the AMOX catalyst is situated after a diesel oxidation catalyst and catalyzed diesel particulate filter that oxidize CO and hydrocarbons. However, in Euro V and proposed Tier 4 final aftertreatment architectures there is no upstream oxidation catalyst. In this study, the impact of hydrocarbons is evaluated on two different types of AMOX catalysts. One has dual washcoat layers-SCR washcoat on top of PGM washcoat-and the other has only a PGM washcoat layer. Results are presented for NH3 and hydrocarbon oxidation, NOx and N2O selectivity, and hydrocarbon storage. The AMOX findings are rationalized in terms of their impact on the individual oxidation and SCR functions.