Refine Your Search

Search Results

Viewing 1 to 5 of 5
Technical Paper

A Novel Approach to Statistical Energy Analysis Model Validation

1995-05-01
951328
Statistical Energy Analysis (SEA) is a tool for estimating the response of complex dynamic systems at high modal density. This tool is seeing ever wider application in a range of industries, including aerospace industry, marine industry, and building trades. The automotive industry is beginning to explore the application of SEA to high frequency vehicle acoustic design. The SEA model of vibrational power transmission has a direct analogy to thermal power transmission (diffusion). As thermal power flow is proportional to temperature difference, vibrational power flow is proportional to modal energy difference. In this paper the thermal analogy is exploited to visualize the SEA results. This is accomplished by color coding a finite element representation of the structure. In this paper, the thermal analogy is used to correlate test data with SEA model results. This is accomplished by constructing a test based modal power thermogram.
Technical Paper

Determination of Vehicle Interior Sound Power Contribution Using Sound Intensity Measurement

1997-05-20
971907
For vehicle interior noise abatement and noise treatment, it is desirable to quantitatively determine sound power contribution from each vehicle component because: (1) Sound packages can be designed with maximized efficiency if sound power contribution into a vehicle is known; (2) Acoustic leakage inside a vehicle can be determined by comparing sound power contributions from adjacent vehicle components; and (3) Sound power flow information can be used to verify Statistical Energy Analysis (SEA) model. Simple sound pressure measurement does not produce any information about sound power flow and is unsuitable for these purposes. This paper describes an in-situ determination of sound power contribution inside a vehicle using sound intensity measurements. Sound power contribution from each vehicle component was determined for engine noise at idle speed. Acoustic leakage in the vehicle was also determined.
Technical Paper

Statistical Energy Analysis for Road Noise Simulation

1997-05-20
971972
Statistical Energy Analysis (SEA) is being actively pursued in the automotive industry as a tool for vehicle high frequency noise and vibration analysis. A D-class passenger car SEA model has been developed for this purpose. This paper describes the development of load cases for the SEA model to simulate road noise on rumble road. Chassis roll test with rough shells was performed to simulate rumble road noise. Sound radiation from tire patch and vibration transmission through spindles were measured to construct the SEA load cases. Correlation between SEA model predictions and measured data was examined. Test and SEA result comparisons have shown that simulation of airborne road noise requires only a trimmed body SEA model, while simulation of structure-borne road noise may require SEA modeling of chassis components.
Technical Paper

Sound Package Design for Lightweight Vehicles

2015-06-15
2015-01-2343
OEMs are racing to develop lightweight vehicles as government regulations now mandate automakers to nearly double the average fuel economy of new cars and trucks by 2025. Lightweight materials such as aluminum, magnesium and carbon fiber composites are being used as structural members in vehicle body and suspension components. The reduction in weight in structural panels increases noise transmission into the passenger compartment. This poses a great challenge in vehicle sound package development since simply increasing weight in sound package components to reduce interior noise is no longer an option [1]. This paper discusses weight saving approaches to reduce noise level at the sources, noise transmission paths, and transmitted noise into the passenger compartment. Lightweight sound package materials are introduced to treat and reduce airborne noise transmission into multi-material lightweight body structure.
Technical Paper

Sound Package Development for Lightweight Vehicle Design using Statistical Energy Analysis (SEA)

2015-06-15
2015-01-2302
Lightweighting of vehicle panels enclosing vehicle cabin causes NVH degradation since engine, road, and wind noise acoustic sources propagate to the vehicle interior through these panels. In order to reduce this NVH degradation, there is a need to develop new NVH sound package materials and designs for use in lightweight vehicle design. Statistical Energy Analysis (SEA) model can be an effective CAE design tool to develop NVH sound packages for use in lightweight vehicle design. Using SEA can help engineers recover the NVH deficiency created due to sheet metal lightweighting actions. Full vehicle SEA model was developed to evaluate the high frequency NVH performance of “Vehicle A” in the frequency range from 200 Hz to 10 kHz. This correlated SEA model was used for the vehicle sound package optimization studies. Full vehicle level NVH laboratory tests for engine and tire patch noise reduction were also conducted to demonstrate the performance of sound package designs on “Vehicle A”.
X