Refine Your Search

Search Results

Viewing 1 to 2 of 2
Journal Article

Impact of Hydrothermal Aging on the Formation and Decomposition of Ammonium Nitrate on a Cu/zeolite SCR Catalyst

Low-temperature (T ≤ 200°C) NOx conversion is receiving increasing research attention due to continued potential reductions in regulated NOx emissions from diesel engines. At these temperatures, ammonium salts (e.g., ammonium nitrate, ammonium (bi)sulfate, etc.) can form as a result of interactions between NH3 and NOx or SOx, respectively. The formation of these salts can reduce the availability of NH3 for NOx conversion, block active catalyst sites, and result in the formation of N2O, a regulated Greenhouse Gas (GHG). In this study, we investigate the effect of hydrothermal aging on the formation and decomposition of ammonium nitrate on a state-of-the-art Cu/zeolite selective catalytic reduction (SCR) catalyst. Reactor-based constant-temperature ammonium nitrate formation, temperature programmed oxidation (TPO), and NO titration experiments are used to characterize the effect of hydrothermal aging from 600 to 950°C.
Technical Paper

Low-Temperature NH3 Storage, Isothermal Desorption, Reactive Consumption, and Thermal Release from Cu-SSZ-13 and V2O5-WO3/TiO2 Selective Catalytic Reduction Catalysts

Worldwide, regulations continue to drive reductions in brake-specific emissions of nitric oxide (NO) and nitrogen dioxide (NO2) from on-highway and nonroad diesel engines. NOx, formed as a byproduct of the combustion of fossil fuels (e.g., natural gas, gasoline, diesel, etc.), can be converted to dinitrogen (N2) through ammonia (NH3) selective catalytic reduction (SCR). In this study, we closely examine the low-temperature storage, isothermal desorption, reactive consumption, and thermal release of NH3 on commercial Cu-SSZ-13 and V2O5-WO3/TiO2 SCR catalysts. Catalyst core-reactor, N2 adsorption (BET) surface area, and in-situ diffuse reflectance Fourier transform infrared spectroscopy (DRIFTS) experiments are utilized to investigate the fundamental chemical processes relevant to low-temperature (T < 250°C) NH3 SCR.