Refine Your Search

Topic

Search Results

Viewing 1 to 14 of 14
Technical Paper

Perceptions of Two Unique Lane Centering Systems: An FOT Interview Analysis

2020-04-14
2020-01-0108
The goal of this interview analysis was to explore and document the perceptions of two unique lane centering systems (S90’s Pilot Assist and CT6’s Super Cruise). Both systems offer a similar type of functionality (adaptive cruise control and lane centering), but have significantly different design philosophies and HMI (Human-Machine Interface) implementations. Twenty-four drivers drove one of the two vehicle models for a month as part of a field operational test (FOT) study. Upon vehicle return, drivers took part in a 60-minute semi-structured interview covering their perceptions of the vehicle’s various advanced driver-assistance systems (ADAS). Transcripts of the interviews were coded by two researchers, who tagged each statement with relevant system and perception code labels. For analysis, the perception codes were grouped into larger thematic bins of safety, comfort, driver attention, and system performance.
Journal Article

Conceptual Modeling of Complex Systems via Object Process Methodology

2009-04-20
2009-01-0524
Knowledge mapping is a first and mandatory step in creation of system architecture. This paper considers the conceptual modeling of automotive systems, and discusses the creation of a knowledge-based model with respect to the Object Process Methodology an approach used in designing intelligent systems by depicting them using object models and process models. With this knowledge, systems engineer should consider what a product is comprised of (its structure), how it operates (its dynamics), and how it interacts with the environment. As systems have become more complex, a prevalent problem in systems development has been the number of accruing errors. A clearly defined and consistent mapping of knowledge regarding structure, operation and interaction is necessary to construct an effective and useful system. An interactive, iterative and consistent method is needed to cope with this complex and circular problem.
Journal Article

Design Drivers of Energy-Efficient Transport Aircraft

2011-10-18
2011-01-2495
The fuel energy consumption of subsonic air transportation is examined. The focus is on identification and quantification of fundamental engineering design tradeoffs which drive the design of subsonic tube and wing transport aircraft. The sensitivities of energy efficiency to recent and forecast technology developments are also examined.
Technical Paper

Comparative Analysis of Automotive Powertrain Choices for the Next 25 Years

2007-04-16
2007-01-1605
This paper assesses the potential improvement of automotive powertrain technologies 25 years into the future. The powertrain types assessed include naturally-aspirated gasoline engines, turbocharged gasoline engines, diesel engines, gasoline-electric hybrids, and various advanced transmissions. Advancements in aerodynamics, vehicle weight reduction and tire rolling friction are also taken into account. The objective of the comparison is the potential of anticipated improvements in these powertrain technologies for reducing petroleum consumption and greenhouse gas emissions at the same level of performance as current vehicles in the U.S.A. The fuel consumption and performance of future vehicles was estimated using a combination of scaling laws and detailed vehicle simulations. The results indicate that there is significant potential for reduction of fuel consumption for all the powertrains examined.
Technical Paper

Axiomatic Design of Automobile Suspension and Steering Systems: Proposal for a Novel Six-Bar Suspension

2004-03-08
2004-01-0811
The existing vehicle designs exhibit a high level of coupling. For instance the coupling in the suspension and steering systems manifests itself through the change in wheel alignment parameters (WAP) due to suspension travel. This change in the WAP causes directional instability and tire-wear. The approach of the industry to solve this problem has been twofold. The first approach has been optimization of suspension link lengths to reduce the change in WAP to zero. Since this is not possible with the existing architecture, the solution used is the optimization of the spring stiffness K to get a compromise solution for comfort (which requires significant suspension travel and hence a soft spring) and directional stability (which demands least possible change in wheel alignment parameters and hence a stiff spring).
Technical Paper

Additional Findings on the Multi-Modal Demands of “Voice-Command” Interfaces

2016-04-05
2016-01-1428
This paper presents the results of a study of how people interacted with a production voice-command based interface while driving on public roadways. Tasks included phone contact calling, full address destination entry, and point-of-interest (POI) selection. Baseline driving and driving while engaging in multiple-levels of an auditory-vocal cognitive reference task and manual radio tuning were used as comparison points. Measures included self-reported workload, task performance, physiological arousal, glance behavior, and vehicle control for an analysis sample of 48 participants (gender balanced across ages 21-68). Task analysis and glance measures confirm earlier findings that voice-command interfaces do not always allow the driver to keep their hands on the wheel and eyes on the road, as some assume.
Technical Paper

A Framework for Robust Driver Gaze Classification

2016-04-05
2016-01-1426
The challenge of developing a robust, real-time driver gaze classification system is that it has to handle difficult edge cases that arise in real-world driving conditions: extreme lighting variations, eyeglass reflections, sunglasses and other occlusions. We propose a single-camera end-toend framework for classifying driver gaze into a discrete set of regions. This framework includes data collection, semi-automated annotation, offline classifier training, and an online real-time image processing pipeline that classifies the gaze region of the driver. We evaluate an implementation of each component on various subsets of a large onroad dataset. The key insight of our work is that robust driver gaze classification in real-world conditions is best approached by leveraging the power of supervised learning to generalize over the edge cases present in large annotated on-road datasets.
Technical Paper

Observed Differences in Lane Departure Warning Responses during Single-Task and Dual-Task Driving: A Secondary Analysis of Field Driving Data

2016-04-05
2016-01-1425
Advanced driver assistance systems (ADAS) are an increasingly common feature of modern vehicles. The influence of such systems on driver behavior, particularly in regards to the effects of intermittent warning systems, is sparsely studied to date. This paper examines dynamic changes in physiological and operational behavior during lane departure warnings (LDW) in two commercial automotive systems utilizing on-road data. Alerts from the systems, one using auditory and the other haptic LDWs, were monitored during highway driving conditions. LDW events were monitored during periods of single-task driving and dual-task driving. Dual-task periods consisted of the driver interacting with the vehicle’s factory infotainment system or a smartphone to perform secondary visual-manual (e.g., radio tuning, contact dialing, etc.) or auditory-vocal (e.g. destination address entry, contact dialing, etc.) tasks.
Technical Paper

Effect of Composition, Particle Size, and Heat Treatment on the Mechanical Properties of Al-4.5 wt.% Cu Based Alumina Particulate Reinforced Composites

1998-02-23
980700
The quest for higher efficiency and performance of automotive vehicles requires application of materials with high strength, stiffness and lower weight in their construction. Particulate-reinforced aluminum-matrix composites are cost-competitive materials, which can meet these requirements. MMCC, Inc. has been optimizing particulate-reinforced alloy systems and developing the Advanced Pressure Infiltration Casting (APIC™) process for the manufacture of components from these materials. This paper discusses the results of a recent study in which composites reinforced with 55 vol.% alumina were cast using two sizes of alumina particulate and eight different matrix alloys based on Al-4.5 wt.% Cu with varying amounts of silicon and magnesium. Optimum heat treatments for each alloy were determined utilizing microhardness studies. The tensile strength and fracture toughness were evaluated as a function of alloy chemistry, particulate size, and heat treatment.
Technical Paper

Optimal Forming of Aluminum 2008-T4 Conical Cups Using Force Trajectory Control

1993-03-01
930286
In this paper we investigate the optimal forming of conical cups of AL 2008-T4 through the use of real-time process control. We consider a flat, frictional binder the force of which can be determined precisely through closed-loop control. Initially the force is held constant throughout the forming of the cup, and various levels of force are tested experimentally and with numerical simulation. Excellent agreement between experiment and simulation is observed. The effects of binder force on cup shape, thickness distribution, failure mode and cup failure height are investigated, and an “optimal” constant binder force is determined. For this optimal case, the corresponding punch force is recorded as a function of punch displacement and is used in subsequent closed-loop control experiments. In addition to the constant force test, a trial variable binder force test was performed to extend the failure height beyond that obtained using the “optimal” constant force level.
Technical Paper

Research Alliances, A Strategy for Progress

1995-09-01
952146
In today's business climate rapid access to, and implementation of, new technology is essential to enhance competitive advantage. In the past, universities have been used for research contracts, but to fully utilize the intellectual resources of education institutions, it is essential to approach these relationships from a new basis: alliance. Alliances permit both parties to become active participants and achieve mutually beneficial goals. This paper will examine the drivers and challenges for industrial -- university alliances from both the industrial and academic perspectives.
Technical Paper

A Driver Behavior Recognition Method Based on a Driver Model Framework

2000-03-06
2000-01-0349
A method for detecting drivers' intentions is essential to facilitate operating mode transitions between driver and driver assistance systems. We propose a driver behavior recognition method using Hidden Markov Models (HMMs) to characterize and detect driving maneuvers and place it in the framework of a cognitive model of human behavior. HMM-based steering behavior models for emergency and normal lane changes as well as for lane keeping were developed using a moving base driving simulator. Analysis of these models after training and recognition tests showed that driver behavior modeling and recognition of different types of lane changes is possible using HMMs.
Technical Paper

New Demands from an Older Population: An Integrated Approach to Defining the Future of Older Driver Safety

2006-10-16
2006-21-0008
The nearly 77 million baby boomers, born between 1946 and 1964, can say that they are the automobile generation. Now turning 60 one every seven seconds, what are the new safety challenges and opportunities posed by the next generation of older adults? This paper presents a modified Haddon matrix to identify key product development, design and liability issues confronting the automobile industry and related stakeholders. The industry is now at a critical juncture to address the development of key technological innovations as well as the changing policy and liability environments being reshaped by an aging population.
Technical Paper

A data driven approach for real-world vehicle energy consumption prediction

2024-04-09
2024-01-2870
Accurately predicting real-world vehicle energy consumption is essential for optimizing vehicle designs, enhancing energy efficiency, and developing effective energy management strategies. This paper presents a data-driven approach that utilizes machine learning techniques and a comprehensive dataset of vehicle parameters and environmental factors to create precise energy consumption prediction models. The methodology involves recording real-world vehicle data using data loggers to extract information from the CAN bus systems for ICE and hybrid electric, as well as hydrogen and battery fuel cell vehicles. Data cleaning and cycle-based analysis are employed to process the dataset for accurate energy consumption prediction. This includes cycle detection and analysis using methods from statistics and signal processing, and then pattern recognition based on these metrics.
X