Refine Your Search

Topic

Author

Search Results

Journal Article

Study of On-Board Ammonia (NH3) Generation for SCR Operation

2010-04-12
2010-01-1071
Mechanisms of NH₃ generation using LNT-like catalysts have been studied in a bench reactor over a wide range of temperatures, flow rates, reformer catalyst types and synthetic exhaust-gas compositions. The experiments showed that the on board production of sufficient quantities of ammonia on board for SCR operation appeared feasible, and the results identified the range of conditions for the efficient generation of ammonia. In addition, the effects of reformer catalysts using the water-gas-shift reaction as an in-situ source of the required hydrogen for the reactions are also illustrated. Computations of the NH₃ and NOx kinetics have also been carried out and are presented. Design and impregnation of the SCR catalyst in proximity to the ammonia source is the next logical step. A heated synthetic-exhaust gas flow bench was used for the experiments under carefully controlled simulated exhaust compositions.
Technical Paper

Ammonium Nitrate Formation and Decomposition on an Extruded Vanadium-Based SCR Catalyst

2020-04-14
2020-01-1320
In this study, the formation and decomposition of ammonium nitrate (AN) on a state-of-the-art extruded vanadium-based SCR catalyst (V-SCR) under simulated exhaust conditions has been evaluated. Results show that AN readily forms and accumulates at temperatures below 200°C when exposed to NH3 and NO2. The rate of AN accumulation increases with decreasing temperature. A new low temperature NH3 release peak (not present following NH3 storage conditions with NH3 only) becomes apparent after AN accumulation at 100 and 125°C. This new NH3 release, with a peak release temperature of approximately 180°C, is evaluated in detail to better determine its origin. BET surface area, and thermal gravimetric analysis/differential scanning calorimetry (TGA/DSC), and reactor-based experiments are all used to characterize AN formed on the V-SCR catalyst in comparison to pure AN.
Journal Article

Methods for Quantifying the Release of Vanadium from Engine Exhaust Aftertreatment Catalysts

2012-04-16
2012-01-0887
Titanium dioxide supported vanadium oxide catalysts have been successfully utilized for the selective catalytic reduction (SCR) of nitrogen oxides emitted from both stationary and mobile sources. Because of their cost and performance advantages in certain applications, vanadium-based SCR catalysts are now also being considered for integration into some U.S. Tier IV off-highway aftertreatment systems. However, concern exists that toxic vanadium compounds, such as vanadium pentoxide, could be released from these catalysts as a result of mechanical attrition or high temperature volatility. An experimental study has been conducted to compare various techniques for measuring the release of particle and vapor-phase vanadium from SCR catalysts. Previous research has utilized a powder reactor-based method to measure the vapor-phase release of vanadium, but there are inherent limitations to this technique.
Journal Article

CoQ Tradeoffs in Manufacturing Process Improvement and Inspection Strategy Selection: A Case Study of Welded Automotive Assemblies

2012-04-16
2012-01-0514
In today's highly competitive automotive markets manufacturers must provide high quality products to survive. Manufacturers can achieve higher levels of quality by changing or improving their manufacturing process and/or by product inspection where many strategies with different cost implications are often available. Cost of Quality (CoQ) reconciles the competing objectives of quality maximization and cost minimization and serves as a useful framework for comparing available manufacturing process and inspection alternatives. In this paper, an analytic CoQ framework is discussed and some key findings are demonstrated using a set of basic inspection strategy scenarios. A case of a welded automotive assembly is chosen to explore the CoQ tradeoffs in inspection strategy selection and the value of welding process improvement. In the assembly process, many individual components are welded in series and each weld is inspected for quality.
Journal Article

NOx Reduction Using a Dual-Stage Catalyst System with Intercooling in Vehicle Gasoline Engines under Real Driving Conditions

2018-04-03
2018-01-0335
Selective catalytic reduction (SCR) of nitrogen oxides (NOx) is used in diesel-fueled mobile applications where urea is an added reducing agent. We show that the Ultera® dual-stage catalyst, with intercooling aftertreatment system, intrinsically performs the function of the SCR method in nominally stoichiometric gasoline vehicle engines without the need for an added reductant. We present that NOx is reduced during the low-temperature operation of the dual-stage system, benefiting from the typically periodic transient operation (acceleration and decelerations) with the associated swing in the air/fuel ratio (AFR) inherent in mobile applications, as commonly expected and observed in real driving. The primary objective of the dual-stage aftertreatment system is to remove non-methane organic gases (NMOG) and carbon monoxide (CO) slip from the vehicle’s three-way catalyst (TWC) by oxidizing these constituents in the second stage catalyst.
Technical Paper

Engine Wear Modeling with Sensitivity to Lubricant Chemistry: A Theoretical Framework

2007-04-16
2007-01-1566
The life of an automotive engine is often limited by the ability of its components to resist wear. Zinc dialkyldithiophosphate (ZDDP) is an engine oil additive that reduces wear in an engine by forming solid antiwear films at points of moving contact. The effects of this additive are fairly well understood, but there is little theory behind the kinetics of antiwear film formation and removal. This lack of dynamic modeling makes it difficult to predict the effects of wear at the design stage for an engine component or a lubricant formulation. The purpose of this discussion is to develop a framework for modeling the formation and evolution of ZDDP antiwear films based on the relevant chemical pathways and physical mechanisms at work.
Technical Paper

Modeling Costs and Fuel Economy Benefits of Lightweighting Vehicle Closure Panels

2008-04-14
2008-01-0370
This paper illustrates a methodology in which complete material-manufacturing process cases for closure panels, reinforcements, and assembly are modeled and compared in order to identify the preferred option for a lightweight closure design. First, process-based cost models are used to predict the cost of lightweighting the closure set of a sample midsized sports utility vehicle (SUV) via material and process substitution. Weight savings are then analyzed using a powertrain simulation to understand the impact of lightweighting on fuel economy. The results are evaluated in the context of production volume and total mass change.
Technical Paper

Development and Validation of a Predictive Model for DEF Injection and Urea Decomposition in Mobile SCR DeNOx Systems

2010-04-12
2010-01-0889
Selective catalytic reduction (SCR) of oxides of nitrogen with ammonia gas is a key technology that is being favored to meet stringent NOx emission standards across the world. Typically, in this technology, a liquid mixture of urea and water - known as Diesel Exhaust Fluid (DEF) - is injected into the hot exhaust gases leading to atomization and subsequent spray processes. The water content vaporizes, while the urea content undergoes thermolysis and forms ammonia and isocyanic acid, that can form additional ammonia through hydrolysis. Due to the increasing interest in SCR technology, it is desirable to have capabilities to model these processes with reasonable accuracy to both improve the understanding of processes important to the aftertreatment and to aid in system optimization. In the present study, a multi-dimensional model is developed to simulate DEF spray processes and the conversion of urea to ammonia. The model is then implemented into a commercial CFD code.
Technical Paper

Crash Safety of Lithium-Ion Batteries Towards Development of a Computational Model

2010-04-12
2010-01-1078
Battery packs for Hybrids, Plug-in Hybrids, and Electric Vehicles are assembled from a system of modules (sheets) with a tight sheet metal casing around them. Each module consists of an array of individual cells which vary in the composition of electrodes and separator from one manufacturer to another. In this paper a general procedure is outlined on the development of a constitutive and computational model of a cylindrical cell. Particular emphasis is placed on correct prediction of initiation and propagation of a tearing fracture of the steel can. The computational model correctly predicts rupture of the steel can which could release aggressive chemicals, fumes, or spread the ignited fire to the neighboring cells. The initiation site of skin fracture depends on many factors such as the ductility of the casing material, constitutive behavior of the system of electrodes, and type of loading.
Technical Paper

Inverse Method for Measuring Weld Temperatures during Resistance Spot Welding

2001-03-05
2001-01-0437
A new monitoring system predicts the progression of welding temperature fields during resistance spot welding. The system captures welding voltages and currents to predict contact diameters and simulate temperature fields. The system accurately predicts fusion lines and heat-affected zones. Accuracy holds even for electrode tips used for a few thousand welds of zinc coated steels.
Technical Paper

An Experimental Study of Piston Skirt Roughness and Profiles on Piston Friction Using the Floating Liner Engine

2016-04-05
2016-01-1043
The piston skirt is an important contributor of friction in the piston assembly. This paper discusses friction contributions from various aspects of the piston skirt. A brief study of piston skirt patterns is presented, with little gains being made by patterning the piston skirt coating. Next the roughness of the piston skirt coating is analyzed, and results show that reducing piston skirt roughness can have positive effects on friction reduction. Finally, an introductory study into the profile of the piston skirt is presented, with the outcome being that friction reduction is possible by optimizing the skirt profile.
Technical Paper

Thermal and Fluid Dynamic Considerations in Aftertreatment System Design for SCR Solid Deposit Mitigation

2012-04-16
2012-01-1287
Selective Catalytic Reduction (SCR) of oxides of nitrogen (NOx) with ammonia gas has established itself as an effective diesel aftertreatment technology to meet stringent emission standards enforced by worldwide regulatory bodies. Typically, in this technology, aqueous urea solution of eutectic composition - known as Diesel Exhaust Fluid (DEF) - is injected into hot exhaust gases leading to a series of thermal, fluid dynamic and reactive processes that eventually produces the ammonia necessary for NOx reduction reactions within monolithic catalytic substrates. Incomplete decomposition of the injected urea can lead to formation of solid deposits that adversely affect system performance by increasing the engine back pressure, reducing de-NOx efficiency, and lowering the overall fuel economy.
Technical Paper

Effect of Hydrothermal Aging on the Catalytic Performance and Morphology of a Vanadia SCR Catalyst

2013-04-08
2013-01-1079
Titania supported vanadia catalysts have been widely used for the selective catalytic reduction (SCR) of nitrogen oxides (NOx) in diesel exhaust aftertreatment systems. Vanadia SCR (V-SCR) catalysts are preferred for many applications because they have demonstrated advantages of catalytic activity for NOx removal and tolerance to sulfur poisoning. The primary shortcoming of V-SCR catalysts is their thermal durability. Degradation in NOx conversion is also related to aging conditions such as at high temperatures. In this study, the impact that short duration hydrothermal aging has on a state-of-the-art V-SCR catalyst was investigated by aging for 2 hr intervals with progressively increased temperatures from 525 to 700°C. The catalytic performance of this V-SCR catalyst upon aging was evaluated by three different reactions of NH₃ SCR, NH₃ oxidation, and NO oxidation under simulated diesel exhaust conditions from 170 to 500°C.
Technical Paper

Dual-Fuel Gasoline-Alcohol Engines for Heavy Duty Trucks: Lower Emissions, Flexible-Fuel Alternative to Diesel Engines

2018-04-03
2018-01-0888
Long-haul and other heavy-duty trucks, presently almost entirely powered by diesel fuel, face challenges meeting worldwide needs for greatly reducing nitrogen oxide (NOx) emissions. Dual-fuel gasoline-alcohol engines could potentially provide a means to cost-effectively meet this need at large scale in the relatively near term. They could also provide reductions in greenhouse gas emissions. These spark ignition (SI) flexible fuel engines can provide operation over a wide fuel range from mainly gasoline use to 100% alcohol use. The alcohol can be ethanol or methanol. Use of stoichiometric operation and a three-way catalytic converter can reduce NOx by around 90% relative to emissions from diesel engines with state of the art exhaust treatment.
Technical Paper

Formation and Decomposition of Ammonium Nitrate on an Ammonia Oxidation Catalyst

2018-04-03
2018-01-0342
Achieving high NOx conversion at low-temperature (T ≤ 200 °C) is a topic of active research due to potential reductions in regulated NOx emissions from diesel engines. At these temperatures, ammonium nitrate may form as a result of interactions between NH3 and NO2. Ammonium nitrate formation can reduce the availability of NH3 for NOx conversion and block active catalyst sites. The thermal decomposition of ammonium nitrate may result in the formation of N2O, a regulated Greenhouse Gas (GHG). In this study, we investigate the formation and thermal and chemical decomposition of ammonium nitrate on a state-of-the-art dual-layer ammonia oxidation (AMOX) catalyst. Reactor-based constant-temperature ammonium nitrate formation, temperature programmed desorption (TPD), and NO titration experiments are used to characterize formation and decomposition.
Technical Paper

Sustained Low Temperature NOx Reduction

2018-04-03
2018-01-0341
Sustained NOx reduction at low temperatures, especially in the 150-200 °C range, shares some similarities with the more commonly discussed cold-start challenge, however, poses a number of additional and distinct technical problems. In this project, we set a bold target of achieving and maintaining 90% NOx conversion at the SCR catalyst inlet temperature of 150 °C. This project is intended to push the boundaries of the existing technologies, while staying within the realm of realistic future practical implementation. In order to meet the resulting challenges at the levels of catalyst fundamentals, system components, and system integration, Cummins has partnered with the DOE, Johnson Matthey, and Pacific Northwest National Lab and initiated the Sustained Low-Temperature NOx Reduction program at the beginning of 2015 and completed in 2017.
Technical Paper

Effect of Composition, Particle Size, and Heat Treatment on the Mechanical Properties of Al-4.5 wt.% Cu Based Alumina Particulate Reinforced Composites

1998-02-23
980700
The quest for higher efficiency and performance of automotive vehicles requires application of materials with high strength, stiffness and lower weight in their construction. Particulate-reinforced aluminum-matrix composites are cost-competitive materials, which can meet these requirements. MMCC, Inc. has been optimizing particulate-reinforced alloy systems and developing the Advanced Pressure Infiltration Casting (APIC™) process for the manufacture of components from these materials. This paper discusses the results of a recent study in which composites reinforced with 55 vol.% alumina were cast using two sizes of alumina particulate and eight different matrix alloys based on Al-4.5 wt.% Cu with varying amounts of silicon and magnesium. Optimum heat treatments for each alloy were determined utilizing microhardness studies. The tensile strength and fracture toughness were evaluated as a function of alloy chemistry, particulate size, and heat treatment.
Technical Paper

Economic and Environmental Tradeoffs in New Automotive Painting Technologies

1998-02-23
981164
Painting is the most expensive unit operation in automobile manufacturing and the source of over 90 percent of the air, water and solid waste emissions at the assembly plant. While innovative paint technologies such as waterborne or powder paints can potentially improve plant environmental performance, implementing these technologies often requires major capital investment. A process-based technical cost model was developed for examining the environmental and economic implications of automotive painting at the unit operation level. The tradeoffs between potential environmental benefits and their relative costs are evaluated for current and new technologies.
Technical Paper

A CAD-Driven Flexible Forming System for Three-Dimensional Sheet Metal Parts

1993-03-01
930282
A novel system for the forming of three dimensional sheet metal parts is described that can form a variety of part shapes without the need for fixed tooling, and given only geometry (CAD) information about the desired part. The central elements of this system are a tooling concept based on a programmable discrete die surface and closed-loop shape control. The former give the process the degrees of freedom to change shape rapidly, and the latter is used to insure that the correct shape is formed with a minimum of forming trials. A 540 kN (60 ton) lab press has been constructed with a 0.3 m (12 in) square pair of discrete tools that can be rapidly re-shaped between forming trials. The shape control system uses measured part shapes to determine a shape error and to correct the tooling shape. This correction is based on a unique “Deformation Transfer Function” approach using a spatial frequency decomposition of the surface.
Technical Paper

Optimal Forming of Aluminum 2008-T4 Conical Cups Using Force Trajectory Control

1993-03-01
930286
In this paper we investigate the optimal forming of conical cups of AL 2008-T4 through the use of real-time process control. We consider a flat, frictional binder the force of which can be determined precisely through closed-loop control. Initially the force is held constant throughout the forming of the cup, and various levels of force are tested experimentally and with numerical simulation. Excellent agreement between experiment and simulation is observed. The effects of binder force on cup shape, thickness distribution, failure mode and cup failure height are investigated, and an “optimal” constant binder force is determined. For this optimal case, the corresponding punch force is recorded as a function of punch displacement and is used in subsequent closed-loop control experiments. In addition to the constant force test, a trial variable binder force test was performed to extend the failure height beyond that obtained using the “optimal” constant force level.
X