Refine Your Search

Search Results

Viewing 1 to 13 of 13
Technical Paper

Investigation of the Dilution Process for Measurement of Particulate Matter from Spark-Ignition Engines

1998-10-19
982601
Measurements of particulate matter (PM) from spark ignition (SI) engine exhaust using dilution tunnels will become more prevalent as emission standards are tightened. Hence, a study of the dilution process was undertaken in order to understand how various dilution related parameters affect the accuracy with which PM sizes and concentrations can be determined. A SI and a compression ignition (CI) engine were separately used to examine parameters of the dilution process; the present work discusses the results in the context of SI exhaust dilution. A Scanning Mobility Particle Sizer (SMPS) was used to measure the size distribution, number density, and volume fraction of PM. Temperature measurements in the exhaust pipe and dilution tunnel reveal the degree of mixing between exhaust and dilution air, the effect of flowrate on heat transfer from undiluted and diluted exhaust to the environment, and the minimum permissible dilution ratio for a maximum sample temperature of 52°C.
Technical Paper

Aggregate Vehicle Emission Estimates for Evaluating Control Strategies

1994-03-01
940303
Currently, states that are out of compliance with the National Ambient Air Quality Standards must, according to the Clean Air Act Amendments of 1990 (CAAA), develop and implement control strategies that demonstrate specific degrees of reduction in emissions-with the degree of reduction depending upon the severity of the problem. One tool that has been developed to aid regulators in both deciding an appropriate course of action and to demonstrate the desired reductions in mobile emissions is EPA's Mobile 5a emission estimation model. In our study, Mobile 5a has been used to examine the effects of regulatory strategies, as applied to the Northeast United States, on vehicle emissions under worst-case ozone-forming conditions.
Technical Paper

Development and Validation of a Predictive Model for DEF Injection and Urea Decomposition in Mobile SCR DeNOx Systems

2010-04-12
2010-01-0889
Selective catalytic reduction (SCR) of oxides of nitrogen with ammonia gas is a key technology that is being favored to meet stringent NOx emission standards across the world. Typically, in this technology, a liquid mixture of urea and water - known as Diesel Exhaust Fluid (DEF) - is injected into the hot exhaust gases leading to atomization and subsequent spray processes. The water content vaporizes, while the urea content undergoes thermolysis and forms ammonia and isocyanic acid, that can form additional ammonia through hydrolysis. Due to the increasing interest in SCR technology, it is desirable to have capabilities to model these processes with reasonable accuracy to both improve the understanding of processes important to the aftertreatment and to aid in system optimization. In the present study, a multi-dimensional model is developed to simulate DEF spray processes and the conversion of urea to ammonia. The model is then implemented into a commercial CFD code.
Technical Paper

Thermal and Fluid Dynamic Considerations in Aftertreatment System Design for SCR Solid Deposit Mitigation

2012-04-16
2012-01-1287
Selective Catalytic Reduction (SCR) of oxides of nitrogen (NOx) with ammonia gas has established itself as an effective diesel aftertreatment technology to meet stringent emission standards enforced by worldwide regulatory bodies. Typically, in this technology, aqueous urea solution of eutectic composition - known as Diesel Exhaust Fluid (DEF) - is injected into hot exhaust gases leading to a series of thermal, fluid dynamic and reactive processes that eventually produces the ammonia necessary for NOx reduction reactions within monolithic catalytic substrates. Incomplete decomposition of the injected urea can lead to formation of solid deposits that adversely affect system performance by increasing the engine back pressure, reducing de-NOx efficiency, and lowering the overall fuel economy.
Technical Paper

Modeling of the Rotary Engine Apex Seal Lubrication

2015-09-01
2015-01-2035
The Wankel rotary engine is more compact than conventional piston engines, but its oil and fuel consumption must be reduced to satisfy emission standards and customer expectations. A key step toward this goal is to develop a better understanding of the apex seal lubrication to reduce oil injection while reducing friction and maintaining adequate wear. This paper presents an apex seal dynamics model capable of estimating relative wear and predicting friction, by modeling the gas and oil flows at the seal interfaces with the rotor housing and groove flanks. Model predictions show that a thin oil film can reduce wear and friction, but to a limited extent as the apex seal running face profile is sharp due to the engine kinematics.
Technical Paper

Emissions of Organic Species from a Nonroad Vanadium-Based SCR Aftertreatment System

2015-09-29
2015-01-2904
U.S. and European nonroad diesel emissions regulations have led to the implementation of various exhaust aftertreatment solutions. One approved configuration, a vanadium-based selective catalytic reduction catalyst followed by an ammonia oxidation catalyst (V-SCR + AMOX), does not require the use of a diesel oxidation catalyst (DOC) or diesel particulate filter (DPF). While certification testing has shown the V-SCR + AMOX system to be capable of meeting the nitrogen oxides, carbon monoxide, and particulate matter requirements, open questions remain regarding the efficacy of this aftertreatment for volatile and nonvolatile organic emissions removal, especially since the removal of this class of compounds is generally attributed to both the DOC and DPF.
Technical Paper

Meeting the US 2007 Heavy-Duty Diesel Emission Standards - Designing for the Customer

2007-10-30
2007-01-4170
The paper covers the design and development of Heavy-Duty (HD) Diesel engines that meet the 2007 HD US EPA emission standards. These standards are the most stringent standards in the world for on-highway HD diesel engines, and have driven the application of new technologies, which includes: particulate aftertreatment, crankcase ventilation systems, and second generation cooled EGR. The paper emphasizes the importance of designing the product to meet the tough expectations of the trucking industry - for lowest total cost of ownership, lowest operating costs, high uptime, ease of maintenance, high performance and durability. A key objective was that these new low emission engines should meet or exceed the performance, reliability and fuel economy standards set by the products they replace. Additionally, these engines were designed to be fully compatible and emissions compliant with bio-diesel B20 blends that meet the ASTM and EMA fuel standards.
Journal Article

Development of Flow Uniformity Indices for Performance Evaluation of Aftertreatment Systems

2011-04-12
2011-01-1239
With the on- and off-road diesel engine emission regulations getting more stringent across the world, diesel aftertreatment systems are expected to deliver outstanding performance and reliability. These objectives should be met by fulfilling tight packaging constraints and incurring only modest material and testing costs. A major strategy for meeting these often conflicting requirements is the effective use of simulation tools such as computational fluid dynamics (CFD) in system design and performance evaluation. Prerequisites for using this CFD analysis-led-design approach, however, are knowledge of the confidence level of the predictions and knowledge of the appropriate transfer functions that establish the relationships between the measured performance parameters and model predictions. The primary aim of the present work is to develop statistically and physically relevant measures that assess the uniformity of flow in aftertreatment systems.
Journal Article

Filtration Efficiency and Pressure Drop Performance of Ceramic Partial Wall Flow Diesel Particulate Filters

2013-11-20
2013-01-9072
A simple 1-dimensional filter model, with symmetric and asymmetric channels, has been developed to investigate the fundamental behavior and performance of ceramic partial diesel particulate filters (PFs). The governing equations of mass and momentum are similar to those of a full DPF [7, 15]. A standard DPF with the plugs at its inlet face removed has been referred to as a ‘rear-plugged PF’ while, one with the plugs at the outlet face removed has been referred to as a ‘front-plugged PF’ in the present study. Removal of some of the plugs from a standard ceramic DPF reduces the (i) overall pressure drop (ΔP) across the filter, (ii) filtration efficiency (FE) of the DPF, and (iii) manufacturing cost. Partial filters stand a high chance of being deployed in diesel exhaust after-treatment systems for the emerging markets (Brazil, Russia, India, China) that follow Euro 4 emission regulations.
Journal Article

Lubricant-Derived Ash Impact on Gasoline Particulate Filter Performance

2016-04-05
2016-01-0942
The increasing use of gasoline direct injection (GDI) engines coupled with the implementation of new particulate matter (PM) and particle number (PN) emissions regulations requires new emissions control strategies. Gasoline particulate filters (GPFs) present one approach to reduce particle emissions. Although primarily composed of combustible material which may be removed through oxidation, particle also contains incombustible components or ash. Over the service life of the filter the accumulation of ash causes an increase in exhaust backpressure, and limits the useful life of the GPF. This study utilized an accelerated aging system to generate elevated ash levels by injecting lubricant oil with the gasoline fuel into a burner system. GPFs were aged to a series of levels representing filter life up to 150,000 miles (240,000 km). The impact of ash on the filter pressure drop and on its sensitivity to soot accumulation was investigated at specific ash levels.
Journal Article

Conversion of Short-Chain Alkanes by Vanadium-Based and Cu/Zeolite SCR Catalysts

2016-04-05
2016-01-0913
The oxidation of short-chain alkanes, such as methane, ethane, and propane, from the exhaust of lean-burn natural gas and lean-burn dual-fuel (natural gas and diesel) engines poses a unique challenge to the exhaust aftertreatment community. Emissions of these species are currently regulated by the US Environmental Protection Agency (EPA) as either methane (Greenhouse Gas Emissions Standards) or non-methane hydrocarbon (NMHC). However, the complete catalytic oxidation of short-chain alkanes is challenging due to their thermodynamic stability. The present study focuses on the oxidation of short-chain alkanes by vanadium-based and Cu/zeolite selective catalytic reduction (SCR) catalysts, generally utilized to control NOx emissions from lean-burn engines. Results reveal that these catalysts are active for short-chain alkane oxidation, albeit, at conversions lower than those generally reported in the literature for Pd-based catalysts, typically used for short-chain alkane conversion.
Journal Article

Understanding System- and Component-Level N2O Emissions from a Vanadium-Based Nonroad Diesel Aftertreatment System

2017-03-28
2017-01-0987
Nitrous oxide (N2O), with a global warming potential (GWP) of 297 and an average atmospheric residence time of over 100 years, is an important greenhouse gas (GHG). In recognition of this, N2O emissions from on-highway medium- and heavy-duty diesel engines were recently regulated by the US Environmental Protection Agency (EPA) and National Highway Traffic Safety Administration’s (NHTSA) GHG Emission Standards. Unlike NO and NO2, collectively referred to as NOx, N2O is not a major byproduct of diesel combustion. However, N2O can be formed as a result of unselective catalytic reactions in diesel aftertreatment systems, and the mitigation of this unintended N2O formation is a topic of active research. In this study, a nonroad Tier 4 Final/Stage IV engine was equipped with a vanadium-based selective catalytic reduction (SCR) aftertreatment system. Experiments were conducted over nonroad steady and both cold and hot transient cycles (NRSC and NRTC, respectively).
Journal Article

The Dynamics of Methane and NOx Removal by a Three-Way Catalyst: A Transient Response Study

2018-04-03
2018-01-1270
Natural gas-powered engines are widely used due to their low fuel cost and in general their lower emissions than conventional diesel engines. In order to comply with emissions regulations, an aftertreatment system is utilized to treat exhaust from natural gas engines. Stoichiometric burn natural gas engines use three-way catalyst (TWC) technology to simultaneously remove NOx, CO, and hydrocarbon (HC). Removal of methane, one of the major HC emissions from natural gas engines, is difficult due to its high stability, posing a challenge for existing TWC technologies. In this work, degreened (DG), standard bench cycle (SBC)-aged TWC catalysts and a DG Pd-based oxidation catalyst (OC) were evaluated and compared under a variety of lean/rich gas cycling conditions, simulating stoichiometric natural gas engine emissions.
X