Refine Your Search



Search Results

Technical Paper

Exhaust Characteristics of the Automotive Diesel

The production of pollutants and an increasing need for pollution management are an inevitable concomitant of a society with a high standard of living. The automotive diesel engine is used more than any other type of engine for transporting freight over highways. Two kinds of pollution to be considered with regard to the diesel engine are the dark exhaust smoke and odor, of which the public is quite cognizant, and the less obvious but possibly toxic carbon monoxide, oxides of nitrogen, unburned hydrocarbons, and trace compounds of other toxic materials. This paper discusses sampling, measurement techniques, and established standards for exhaust smoke and odor. Examination of diesel exhaust shows it to be less offensive in terms of harmful effects than the invisible exhaust from other types of engines. The major problem is exhaust color and odor.
Technical Paper

Combination Diesel Engine - Air Compressor - “The Dual Diesel”

Until recently, dry cargo has been unloaded from trucks by use of compressed air. By making the automotive engine act partly as an air compressor during the unloading operation, the auxiliary air compressor mounted on the tractor frame can be eliminated. This paper, in describing the dual diesel, discusses operating characteristics, cycle analysis, and operational problems.
Technical Paper

Cummins Technical Center

This paper presents the design philosophy and the technical capabilities of a new technical center built by Cummins Engine Co. The center was built primarily for development of diesel and similar engines, but also has broad capability for development of a variety of advanced power systems. The facility includes 88 instrumented test cells for testing power units up to 2000 hp under a complete range of environmental and special test conditions. Additional research laboratories support development activity and perform advanced studies in analytical techniques, materials development, and basic engine mechanisms.
Technical Paper

Comparison of Measured and Theoretical Inter-Ring Gas Pressure on a Diesel Engine

Inter-ring gas pressure and piston ring motion are considered important for the control of oil consumption, particulate emissions, and reduced friction. For this reason, inter-ring gas pressure was measured on a diesel engine. Two different ring pack configurations were tested (positive and negative twist second rings). A significant difference in measured inter-ring pressure was observed. The measurements were compared to the predictions of a cylinder kit model with favorable results. Predictions showed that the observed difference between measured inter-ring pressures is caused by a significant difference in ring motion. The reasons for these differences are explained in this paper.
Technical Paper

Effect of Fuel Composition and Altitude on Regulated Emissions from a Lean-Burn, Closed Loop Controlled Natural Gas Engine

Natural gas presents several challenges to engine manufacturers for use as a heavy-duty, lean burn engine fuel. This is because natural gas can vary in composition and the variation is large enough to produce significant changes in the stoichiometry of the fuel and its octane number. Similarly, operation at high altitude can present challenges. The most significant effect of altitude is lower barometric pressure, typically 630 mm Hg at 1600 m compared to a sea level value of 760 mm. This can lower turbocharger boost at low speeds leading to mixtures richer than desired. The purpose of this test program was to determine the effect of natural gas composition and altitude on regulated emissions and performance of a Cummins B5.9G engine. The engine is a lean-burn, closed loop control, spark ignited, dedicated natural gas engine. For fuel composition testing the engine was operating at approximately 1600 m (5,280 ft) above sea level.
Technical Paper

A New Method for Engine Low Power Detection in Trucks

A new method for detecting the low power conditions on electronically-controlled diesel engines used in on-road vehicles has been developed. The advantage of this method is that it uses readily available diagnostic tools and engine installed sensors with no necessity for a dynamometer test. Without removing the engine, it gives an estimate of the real engine power which is accurate to 5%.
Technical Paper

Experimental Measurements on the Effect of Insulated Pistons on Engine Performance and Heat Transfer

Data have been gathered to compare the performance of steel crown pistons coated with yttria stabilized zirconia or mullite to an uncoated piston. The effect of coated pistons on in-cylinder heat transfer was determined from curves of ISFC versus centroid of heat release. Error analysis of the measurements showed uncertainty of ± 3% in ISFC and ± 2 crank angle degrees in the centroid of heat release could be expected for the data. Particulate emissions increased at advanced injection timings with the mullite coated piston while the zirconia coated piston showed an increase in particulate and NOx at advanced timings.
Technical Paper

Evaluation of Microalloyed Steel for Articulated Piston Applications in Heavy Duty Diesel Engines

AISI-4140H steel has been used as articulated piston crown material in heavy-duty engines. With the driving force for reducing manufacturing cost, microalloyed steel (MAS) was identified as a low-cost material to replace 4140H steel. In order to determine the feasibility of using MAS to replace 4140H steel, a test program was initiated to fully evaluate the material properties of MAS and to compare them to those of the baseline 4140H steel. The physical and mechanical properties of both materials from room temperature to 550°C were evaluated. The effect of long term thermal exposure on the material properties was also studied. Some engine tests were also conducted to evaluate the performance of the articulated pistons made with both materials. The inherently lower strength of MAS as compared to 4140H steel, requires a total re-design of the piston for the utilization of MAS as a low-cost replacement material for 4140H steel.
Technical Paper

Cummins Light Truck Diesel Engine Progress Report, 2000

The Automotive Market in the United States is moving in the direction of more Light Trucks and fewer Small Cars. The customers for these vehicles have not changed, only their purchase decisions. Cummins has studied the requirements of this emerging market. Design and development of an engine system that will meet these customer needs has started. The engine system is a difficult one, since the combined requirements of a very fuel-efficient commercial diesel, and the performance and sociability requirements of a gasoline engine are needed. Results of early testing are presented which show that the diesel is possibly a good solution.
Technical Paper

Tribological Investigations for an Insulated Diesel Engine

A Minimum Cooled Engine (MCE) has been successfully run for 250 hours at rated condition of 298 kW and 1900 rpm. This engine was all metallic without any coolant in the block and lower part of the heads. Ring/liner/lubricant system and thermal loading on the liner at top ring reversal (TRR) as well as on the piston are presented and discussed. Ring/liner wear is given as well as oil consumption and blow-by data during the endurance run. Another engine build with a different top ring coating and several lubricants suggested that a 1500 hours endurance run of MCE is achievable. Rig test data for screening ring materials and synthetic lubricants necessary for a successful operation of a so-called Adiabatic Engine with the ring/ceramic liner (SiN) interface temperature up to 650°C are presented and discussed.
Technical Paper

A Numerical Study of the Transient Evaporating Spray Mixing Process in the Diesel Environment

Some results of a systematic study of the effects of fuel and chamber gas properties on the transient evaporating spray mixing process are presented. The study uses an existing two-dimensional stochastic thick spray model. The results show that the combustion process in typical heavy duty, quiescent, DI diesel engines can be mixing limited rather than vaporization limited. In addition, the results show that the mixing process of a transient evaporating spray is characterized by the combined effects of fuel evaporation and its turbulent mixing with the surrounding air. In general, increasing the evaporation rate alone does not necessarily increase the fuel-air mixing rate. Furthermore, two dimensionless parameters have been used to quantify the relative effects of fuel and chamber gas properties on the transient spray evaporation process. Finally, through detailed comparisons between spray and gas jet results, the transient evaporating spray mixing process is better understood.
Technical Paper

Performance and Regeneration Characteristics of a Cellular Ceramic Diesel Particulate Trap

Fundamental aspects of performance and regeneration of a porous ceramic particulate trap are described. Dimensionless correlations are given for pressure drop vs. flow conditions for clean and loaded traps. An empirical relationship between estimated particulate deposits and a loading parameter that distinguishes pressure drop changes due to flow variations from particulate accumulation is presented. Results indicate that trapping efficiencies exceed 90% under most conditions and pressure drop doubles when particulate accumulation occupies only 5% of the available void volume. Regeneration was achieved primarily by throttling the engine intake air. For various combinations of initial loading level, trap inlet temperature and oxygen concentration, it was found that regeneration rate peaked after 45 seconds from initiation.
Technical Paper

Effects of Injection Timing and Exhaust Gas Recirculation on Emissions from a D.I. Diesel Engine

Some results of a systematic study on the effects of injection timing retard and exhaust gas recirculation on emissions from a D.I. diesel engine are presented. The factors investigated include engine speed, fuel rate, injection timing, injection pressure, intake charge oxygen concentration, and type of diluent. The detailed mechanisms governing the formation and control of nitric oxide are studied analytically, using a previously developed diesel combustion model based on transient fuel-air mixing and Zeldovich nitric oxide reaction mechanisms. The results show that exhaust gas recirculation and injection timing retard are both effective in reducing nitric oxide emissions at the expense of increasing smoke. The reduction of nitric oxide with exhaust gas recirculation and injection timing retard is mainly related to the decrease of local temperature and local atomic oxygen concentration.
Technical Paper

Experimental and Analytical Studies of Cylinder Head Cooling

Previous work on the cooling jackets of the Cummins L10 engine revealed flow separation, and low coolant velocities in several critical regions of the cylinder head. The current study involved the use of detailed cooling jacket temperature measurements, and finite element heat transfer analysis to attempt the identification of regions of pure convection, nucleate boiling, and film boiling. Although difficult to detect with certainty, both the measurements and analysis pointed strongly to the presence of nucleate boiling in several regions. Little or no evidence of film boiling was seen, even under very high operating loads. It was thus concluded that the regions of seemingly inadequate coolant flow remained quite effective in controlling cylinder head temperatures. The Cummins L10 upon which this study has focused is an in-line six cylinder, four-stroke direct injection diesel engine, with a displacement of 10 liters.
Technical Paper

Combustion Chamber Insulation Effect on the Performance of a Low Heat Rejection Cummins V-903 Engine

Cummins Engine Company is developing a low heat rejection 450 kW engine under contract for the US Army Tank & Automotive Command. This paper discusses progress made toward achieving the program goals of 6.6 kcal/kW-min brake specific heat rejection and 200 g/kW-hr brake specific fuel consumption. Methodology for measuring heat rejection on a low heat rejection engine is presented. Design improvements of the base engine are discussed along with their effect on improving fuel consumption. Performance test data is assessed in terms of the first law energy balance and cooling load distribution. The heat rejection data provides insights on the performance of insulating components and two cooling system designs. Diesel cycle simulations are compared to the test data and are used to predict the effect of ceramic insulation on engine heat rejection.
Technical Paper

Test Cell Simulation of the Driveby Noise Test

Diesel engine manufacturers have traditionally done most engine noise development work under steady: state operating conditions. However, truck driveby noise tests are acceleration tests, and engines exhibit different noise behavior under accelerating conditions. Acceleration noise can be affected by engine performance parameters which may have no influence on steady state noise levels. In this study, a test cell simulation of the truck driveby procedure has been developed and evaluated. Test cell simulation and truck driveby results are compared for a naturally-aspirated and a turbocharged engine. This simulation procedure has been shown to predict reliably results measured in vehicles. As a result, the simulation can be used to evaluate engine modifications during the development process without requiring a vehicle installation.
Technical Paper

An Evaluation of the Lucas Combustion Noise Meter on Cummins ‘B’ Series Engines

Lucas Industries Noise Centre has introduced a combustion noise meter which is designed to predict the contribution of the combustion process to overall diesel engine noise. The performance of the meter is evaluated using Cummins B series engines in naturally-aspirated and turbocharged form. Combustion noise levels predicted by the meter are compared to levels determined using traditional techniques. The effects of several engine operating parameters on combustion noise are investigated under both steady state and accelerating conditions. The meter reliably predicts changes in combustion noise levels, and is a useful tool for performance development engineers. Combustion noise is shown to be related to the maximum rate of pressure rise at the onset of combustion, but combustion noise is not reliably related to maximum cylinder pressures.
Technical Paper

Cummins/TACOM Adiabatic Englue Program

Joint development of the adiabatic engine by Cummins Engine Company and the U. S. Army began with a feasibility analysis ten years ago. The effort was initially driven by the expectation of substantial performance improvement, a reduction in cooling system size, and several additional benefits. Program emphasis turned quickly to experimentation with the goal of demonstrating the feasibility of the adiabatic engine in working hardware. Several significant achievements were realized as have been reported earlier. Further development of the adiabatic engine is expected to be more evolutionary, paced by available technology in the areas of materials and tribology. Analysis capability necessary for insulated engine development has been found to be inadequate. Additional effort has gone into the development and validation of insulated engine analysis tools, both for cycle simulation and structural modeling.
Technical Paper

Combustion Chamber Component Analysis for Advanced Heavy Duty Diesel Engines

Detailed thermal analysis was conducted on several advanced cylinder head, liner, and piston concepts, for low heat rejection diesel engines. The analysis was used to define an optimized engine configuration. Results pointed to the strategic use of oil cooling and insulation in the cylinder head, an oil cooled cylinder liner, and an insulated piston, with separate insulation behind the compression rings. Such a configuration reduced in-cylinder heat rejection by 30 percent, while durability would be expected to be maintained or improved from today's production levels.
Technical Paper

Engineered Thermal Barrier Coatings for Diesels

Through an integrated process involving thermal/mechanical analysis, coating property characterization, plasma spray process control, and rig testing under simulated engine thermal conditions, plasma sprayed zirconia coatings have been defined which offer a high degree of thermal insulation. Analytical and rig tests results showed that a multi-layer coating, combined with control of residual stress during fabrication, offered the greatest potential for meeting the thermal insulation goals while providing the required durability in piston crown and cylinder head applications. Coating thicknesses ranging from 1.5 to 2.5 mm (0.06 to 0.10 inch) were evaluated and tested in the laboratory. Single cylinder engine tests of the multi-layer thermal barrier coatings have demonstrated that coatings up to 2.54 mm (0.10 in.) thick on pistons can operate at 1.03 MPa (150 psi) brake mean effective pressures (BMEP).