Refine Your Search

Search Results

Viewing 1 to 8 of 8
Technical Paper

Testing Procedures for Introduction of Silicon Carbide and Carbon Water Pump Seal Faces into Heavy Duty Diesel Service

1993-03-01
930585
Testing procedures to evaluate new coolant pump seal face materials and new coolant pump seal designs were evaluated. Rig testing of materials and seals followed by engine dynamometer testing enabled changes in the seal materials or design to be validated prior to field testing and limited production. These procedures were used to test and implement a coolant pump seal face material change to silicon carbide versus carbon. The change resulted in higher reliability for the coolant pump seal and reduced warranty cost for the engine.
Technical Paper

Cavitation Intensity Measurements for Internal Combustion Engines

1996-02-01
960884
Recent engine design trends towards increasing power, reducing weight, advancing of injection timing and increasing of injection rate and pressure could result in increased incidence of liner pitting. Liner pitting due to coolant cavitation is a complex function of many engine design parameters and operating conditions as described in reference [1]*. Traditionally, liner cavitation problems were not detected early in the development cycle. Traditional liner vibration and coolant pressure measurements in conjunction with a numerous amount of expensive engine endurance tests were then needed to resolve cavitation problems. A method newly developed by the author and described in reference [2] for cavitation intensity measurements was successfully utilized to map out engine operating condition and develop limit curves. This method could also be applied in a non intrusive fashion.
Technical Paper

Real Time Captivation Detection Method

1996-02-01
960878
Cavitation corrosion is a very complex phenomenon that is governed by a formidable amount of factors and parameters. The phenomenon is a multi-disciplinary one which involves several aspects of physical sciences and engineering. This process is a slow progressive phenomenon with its detrimental effects being felt after severe damage has already occurred. A real time detection method for the severity of fluid cavitation and bubble collapse is described. The results are correlated to dynamic instantaneous pressure fluctuation measurements. The method is fast, reliable, and less restrictive of the sensing location. It has been tested and verified through a specially designed cavitation test rig and instrumentation setup. The method can be used for cavitation studies on ultrasonic bench rig tests and for cavitation measurements on running engines. The method was used to shed some light on characteristic cavitation differences between water and glycol which is used in engine coolants.
Technical Paper

Cooling Higher Horsepower Highway Diesel Engines

1975-02-01
750131
The increase in power-to-weight ratio that results from the use of higher-horsepower diesel engines in highway service prompted this study of engine cooling. This paper covers the results obtained in testing different power-to-weight ratios on grades from sea level to over 11,000 ft and compares these results with those obtained from chassis and towing dynamometer cooling trials.
Technical Paper

Performance and Regeneration Characteristics of a Cellular Ceramic Diesel Particulate Trap

1982-02-01
820272
Fundamental aspects of performance and regeneration of a porous ceramic particulate trap are described. Dimensionless correlations are given for pressure drop vs. flow conditions for clean and loaded traps. An empirical relationship between estimated particulate deposits and a loading parameter that distinguishes pressure drop changes due to flow variations from particulate accumulation is presented. Results indicate that trapping efficiencies exceed 90% under most conditions and pressure drop doubles when particulate accumulation occupies only 5% of the available void volume. Regeneration was achieved primarily by throttling the engine intake air. For various combinations of initial loading level, trap inlet temperature and oxygen concentration, it was found that regeneration rate peaked after 45 seconds from initiation.
Technical Paper

Tribological Investigations for an Insulated Diesel Engine

1983-02-01
830319
A Minimum Cooled Engine (MCE) has been successfully run for 250 hours at rated condition of 298 kW and 1900 rpm. This engine was all metallic without any coolant in the block and lower part of the heads. Ring/liner/lubricant system and thermal loading on the liner at top ring reversal (TRR) as well as on the piston are presented and discussed. Ring/liner wear is given as well as oil consumption and blow-by data during the endurance run. Another engine build with a different top ring coating and several lubricants suggested that a 1500 hours endurance run of MCE is achievable. Rig test data for screening ring materials and synthetic lubricants necessary for a successful operation of a so-called Adiabatic Engine with the ring/ceramic liner (SiN) interface temperature up to 650°C are presented and discussed.
Technical Paper

Wind Tunnel Investigation of the Effects of Installation Parameters on Truck Cooling System Performance

1976-02-01
760832
The effect of eight installation and component parameters on cooling system heat rejection and air flow were examined in detail in a wind tunnel facility. A quarter-replicate, two level factorial test plan was followed. Within the ranges of each parameter tested, the fan characteristics and the projection of fan into the shroud are highly significant parameters. The fan to radiator distance, the radiator characteristics, and the fan tip to shroud clearance are significant parameters. The fan to engine block distance and the type of shroud are not significant parameters.
Technical Paper

Combustion Chamber Insulation Effect on the Performance of a Low Heat Rejection Cummins V-903 Engine

1986-03-01
860317
Cummins Engine Company is developing a low heat rejection 450 kW engine under contract for the US Army Tank & Automotive Command. This paper discusses progress made toward achieving the program goals of 6.6 kcal/kW-min brake specific heat rejection and 200 g/kW-hr brake specific fuel consumption. Methodology for measuring heat rejection on a low heat rejection engine is presented. Design improvements of the base engine are discussed along with their effect on improving fuel consumption. Performance test data is assessed in terms of the first law energy balance and cooling load distribution. The heat rejection data provides insights on the performance of insulating components and two cooling system designs. Diesel cycle simulations are compared to the test data and are used to predict the effect of ceramic insulation on engine heat rejection.
X