Refine Your Search

Topic

Search Results

Viewing 1 to 10 of 10
Journal Article

A De-Spin and Wings-Leveling Controller for a 40 mm Hybrid Projectile

2013-09-17
2013-01-2262
A Hybrid Projectile (HP) is a round that transforms into a UAV after being launched. Some HP's are fired from a rifled barrel and must be de-spun and wings-level for lifting surfaces to be deployed. Control surfaces and controllers for de-spinning and wings-leveling were required for initial design of an HP 40 mm. Wings, used as lifting surfaces after transformation, need to be very close to level with the ground when deployed. First, the tail surface area needed to de-spin a 40 mm HP was examined analytically and simulated. Next, a controller was developed to maintain a steady de-spin rate and to roll-level the projectile in preparation of wing deployment. The controller was split into two pieces, one to control de-spin, and the other for roll-leveling the projectile. An adaptable transition point for switching controllers was identified analytically and then adjusted by using simulations.
Journal Article

New Insights into Reaction Mechanism of Selective Catalytic Ammonia Oxidation Technology for Diesel Aftertreatment Applications

2011-04-12
2011-01-1314
Mitigation of ammonia slip from SCR system is critical to meeting the evolving NH₃ emission standards, while achieving maximum NOx conversion efficiency. Ammonia slip catalysts (ASC) are expected to balance high activity, required to oxidize ammonia across a broad range of operating conditions, with high selectivity of converting NH₃ to N₂, thus avoiding such undesirable byproducts as NOx or N₂O. In this work, new insights into the behavior of an advanced ammonia slip catalyst have been developed by using accelerated progressive catalyst aging as a tool for catalyst property interrogation. The overall behavior was deconstructed to several underlying functions, and referenced to an active but non-selective NH₃ oxidation function of a diesel oxidation catalyst (DOC) and to the highly selective but minimally active NH₃ oxidation function of an SCR catalyst.
Technical Paper

Experimental Study of Dielectric Barrier Discharge Driven Duct Flow for Propulsion Applications in Unmanned Aerial Systems

2017-09-19
2017-01-2063
The dielectric barrier discharge (DBD) has been studied significantly in the past two decades for its applications to various aerodynamic problems. The most common aerodynamic applications have been stall/separation control and boundary layer modification. Recently several researchers have proposed utilizing the DBD in various configurations to act as viable propulsion systems for micro and nano aerial vehicles. The DBD produces stable atmospheric-pressure non-thermal plasma in a thin sheet with a preferred direction of flow. The plasma flow, driven by electrohydrodynamic body forces, entrains the quiescent air around it and thus develops into a low speed jet on the order of 10-1 to 101 m/s. Several researchers have utilized DBDs in an annular geometric setup as a propulsion device. Other researchers have used them to alter rectangular duct flows and directional jet devices. This study investigates 2-D duct flows for applications in micro plasma thrusters.
Technical Paper

Hybrid Projectile Transformation Condition Detection System for Extended Selectable Range

2013-09-17
2013-01-2203
A Hybrid Projectile (HP) is a tube launched munition that transforms into a gliding UAV, and is currently being researched at West Virginia University. In order to properly transform, the moment of transformation needs to be controlled. A simple timer was first envisioned to control transformation point for maximum distance. The distance travelled or range of an HP can directly be modified by varying the launch angle. In addition, an internal timer would need to be reprogrammed for any distance less than maximum range due to the nominal time to deployment varying with launch angle. A method was sought for automatic wing deployment that would not require reprogramming the round. A body angle estimation system was used to estimate the pitch of the HP relative to the Earth to determine when the HP is properly oriented for the designed glide slope angle. It also filters out noise from an inertial measurement unit (IMU).
Technical Paper

Quantification of Energy Pathways and Gas Exchange of a Small Port Injection SI Two-Stroke Natural Gas Engine Operating on Different Exhaust Configurations

2018-04-03
2018-01-1278
This paper examines the energy pathways of a 29cc air-cooled two-stroke engine operating on natural gas with different exhaust geometries. The engine was operated at wide-open-throttle at a constant speed of 5400 RPM with ignition adjusted to yield maximum brake torque while the fueling was adjusted to examine both rich and lean combustion. The exhaust configurations examined included an off-the-shelf (OTS) model and two other custom models designed on Helmholtz resonance theory. The custom designs included both single and multi-cone features. Out of the three exhaust systems tested, the model with maximum trapping efficiency showed a higher overall efficiency due to lower fuel short-circuiting and heat transfer. The heat transfer rate was shown to be 10% lower on the new designs relative to OTS model.
Technical Paper

New Insights into the Unique Operation of Small Pore Cu-Zeolite SCR Catalyst: Overlapping NH3 Desorption and Oxidation Characteristics for Minimizing Undesired Products

2014-04-01
2014-01-1542
An operational challenge associated with SCR catalysts is the NH3 slip control, particularly for commercial small pore Cu-zeolite formulations as a consequence of their significant ammonia storage capacity. The desorption of NH3 during increasing temperature transients is one example of this challenge. Ammonia slipping from SCR catalyst typically passes through a platinum based ammonia oxidation catalyst (AMOx), leading to the formation of the undesired byproducts NOx and N2O. We have discovered a distinctive characteristic, an overlapping NH3 desorption and oxidation, in a state-of-the-art Cu-zeolite SCR catalyst that can minimize NH3 slip during temperature transients encountered in real-world operation of a vehicle.
Technical Paper

Heavy-Duty Aerodynamic Testing for CO2 Certification: A Methodology Comparison

2019-04-02
2019-01-0649
Aerodynamic drag testing is a key component of the CO2 certification schemes for heavy-duty vehicles around the world. This paper presents and compares the regulatory approaches for measuring the drag coefficient of heavy-duty vehicles in Europe, which uses a constant-speed test, and in the United States and Canada, which use a coastdown test. Two European trucks and one North American truck were tested using the constant-speed and coastdown methods. When corrected to zero yaw angle, a difference of up to 12% was observed in the measured drag coefficients from the US coastdown procedure and the EU constant-speed test.
Technical Paper

Impact of Sulfur-Oxides on the Ammonia Slip Catalyst Performance

2014-04-01
2014-01-1545
The ammonia slip catalyst (ASC), typically composed of Pt oxidation catalyst overlaid with SCR catalyst, is employed for the mitigation of NH3 slip originating from SCR catalysts. Oxidation and SCR functionalities in an ASC can degrade through two key mechanisms i) irreversible degradation due to thermal aging and ii) reversible degradation caused by sulfur-oxides. The impact of thermal aging is well understood and it mainly degrades the SCR function of the ASC and increases the NH3 conversion to undesired products [1]. This paper describes the impact of sulfur-oxides on critical functions of ASC and on NH3 oxidation activity and selectivity towards N2, NOx and N2O. Furthermore impact of desulfation under selected conditions and its extent of ASC performance recovery is explained.
Journal Article

Model-Based Approaches in Developing an Advanced Aftertreatment System: An Overview

2019-01-15
2019-01-0026
Cummins has recently launched next-generation aftertreatment technology, the Single ModuleTM aftertreatment system, for medium-duty and heavy-duty engines used in on-highway and off-highway applications. Besides meeting EPA 2010+ and Euro VI regulations, the Single ModuleTM aftertreatment system offers 60% volume and 40% weight reductions compared to current aftertreatment systems. In this work, we present model-based approaches that were systematically adopted in the design and development of the Cummins Single ModuleTM aftertreatment system. Particularly, a variety of analytical and experimental component-level and system-level validation tools have been used to optimize DOC, DPF, SCR/ASC, as well as the DEF decomposition device.
Journal Article

Laboratory sulfation of an ammonia slip catalyst with a real-world SO2 concentration

2023-04-11
2023-01-0380
Upcoming, stricter diesel exhaust emissions standards will likely require aftertreatment architectures with multiple diesel exhaust fluid (DEF) introduction locations. Managing NH3 slip with technologies such as an ammonia slip catalyst (ASC) will continue to be critical in these future aftertreatment systems. In this study, we evaluate the impact of SO2 exposure on a state-of-the-art commercially available ASC. SO2 is co-fed at 0.5 or 3 ppmv to either approximate or accelerate a real-world exhaust SO2 impact. ASC performance during sulfur co-feeding is measured under a wide variety of simulated real-world conditions. Results indicate that the loss of NO conversion during SCR is dependent on the cumulative SO2 exposure, regardless of the inlet SO2 concentration. Meanwhile, N2O formation under SCR conditions is nonlinearly affected by SO2 exposure, with formation increasing during 0.5 ppmv SO2 exposure but decreasing in the presence of 3 ppmv SO2.
X